Sport Sciences for Health

, Volume 13, Issue 2, pp 259–265 | Cite as

Chronic supplementation of omega-3 can improve body composition and maximal strength, but does not change the resistance to neuromuscular fatigue

  • Dhiego Mangilli Crestani
  • Érick Fernando Rodrigues Bonin
  • Ricardo Augusto Barbieri
  • Alessandro Moura Zagatto
  • Wonder Passoni Higino
  • Fabio MilioniEmail author
Original Article



The present study aimed to determine whether supplementation with omega-3 fatty acid (N-3) contributes to improving body composition, strength performance, and neuromuscular fatigue resistance in physically active men.


The study was randomized, double–blind, and placebo controlled. 15 males were recruited and randomly assigned into two groups, N-3 supplementation (GN-3; N = 7) and placebo supplementation (GP; N = 8). Supplementation with N-3 or a placebo (safflower oil) was administered for 28-days at 1.4 g·day−1. During this period, physical activity was monitored (internal load = volume × perceived exertion scale). Before and after the supplementation period, body composition, one maximum repetition of knee extension (1RM), and maximum repetitions of knee extension with 70 % of 1RM load (RMs) pre and post an incremental running protocol until exhaustion were measured.


ANOVA two way (p < 0.05) revealed a decrease in body fat mass (GP before: 8.3 ± 2.1 kg × after: 7.7 ± 2.4 kg; GN-3 before: 12.8 ± 9.4 kg × after: 11.8 ± 9.3 kg), increase in lean mass (GP before: 61.8 ± 4.1 kg × after: 62.7 ± 3.9 kg; GN-3 before: 64.2 ± 5.8 kg × after: 66.2 ± 6.0 kg), and 1RM (GP before: 111.3 ± 29.1 kg × after: 111.3 ± 25.9 kg; GN-3 before: 115.0 ± 36.2 kg × after: 129.1 ± 39.9 kg) in the GN-3, without significant alterations in the GP and no interactions between-groups. Moreover, the absolute variation of the RMs pre and post the incremental running protocol were not significantly altered for both group (GP before: −1.1 ± 2.9 repetitions × after: −1.1 ± 2.6 repetitions; GN-3 before: −3.9 ± 2.9 repetitions × after: −5.0 ± 4.6 repetitions), with no interactions between-groups.


Four weeks of N-3 supplementation seems to improved body composition and maximal strength of knee extension, without influencing neuromuscular fatigue resistance.


Weight lifting Strength training Neuromuscular fatigue 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Research Committee of the UNISALESIANO-Catholic Center University (Protocol 867.319/2014) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in study.

Supplementary material

11332_2016_322_MOESM1_ESM.pdf (3.4 mb)
Supplementary material 1 (PDF 3445 kb)


  1. 1.
    Hill AM, Buckley JD, Murphy KJ, Howe PR (2007) Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors. Am J Clin Nutr 85(5):1267–1274PubMedGoogle Scholar
  2. 2.
    Buckley JD, Burgess S, Murphy KJ, Howe PR (2009) DHA-rich fish oil lowers heart rate during submaximal exercise in elite Australian rules footballers. J Sci Med Sport 12(4):503–507. doi: 10.1016/j.jsams.2008.01.011 CrossRefPubMedGoogle Scholar
  3. 3.
    Jeukendrup AE, Aldred S (2004) Fat supplementation, health, and endurance performance. Nutrition 20(7–8):678–688. doi: 10.1016/j.nut.2004.04.018 CrossRefPubMedGoogle Scholar
  4. 4.
    Jouris KB, McDaniel JL, Weiss EP (2011) The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. J Sports Sci Med 10(3):432–438PubMedPubMedCentralGoogle Scholar
  5. 5.
    Lembke P, Capodice J, Hebert K, Swenson T (2014) Influence of omega-3 (n3) index on performance and wellbeing in young adults after heavy eccentric exercise. J Sports Sci Med 13(1):151–156PubMedPubMedCentralGoogle Scholar
  6. 6.
    Huffman DM, Altena TS, Mawhinney TP, Thomas TR (2004) Effect of n-3 fatty acids on free tryptophan and exercise fatigue. Eur J Appl Physiol 92(4–5):584–591. doi: 10.1007/s00421-004-1069-6 PubMedGoogle Scholar
  7. 7.
    Peoples GE, McLennan PL, Howe PR, Groeller H (2008) Fish oil reduces heart rate and oxygen consumption during exercise. J Cardiovasc Pharmacol 52(6):540–547. doi: 10.1097/FJC.0b013e3181911913 CrossRefPubMedGoogle Scholar
  8. 8.
    Lewis EJ, Radonic PW, Wolever TM, Wells GD (2015) 21 days of mammalian omega-3 fatty acid supplementation improves aspects of neuromuscular function and performance in male athletes compared to olive oil placebo. J Int Soc Sports Nutr 12:28. doi: 10.1186/s12970-015-0089-4 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Davis JM, Alderson NL, Welsh RS (2000) Serotonin and central nervous system fatigue: nutritional considerations. Am J Clin Nutr 72(2 Suppl):573S–578SPubMedGoogle Scholar
  10. 10.
    Wilson WM, Maughan RJ (1992) Evidence for a possible role of 5-hydroxytryptamine in the genesis of fatigue in man: administration of paroxetine, a 5-HT re-uptake inhibitor, reduces the capacity to perform prolonged exercise. Exp Physiol 77(6):921–924CrossRefPubMedGoogle Scholar
  11. 11.
    Bailey SP, Davis JM, Ahlborn EN (1993) Serotonergic agonists and antagonists affect endurance performance in the rat. Int J Sports Med 14(6):330–333. doi: 10.1055/s-2007-1021187 CrossRefPubMedGoogle Scholar
  12. 12.
    Dagnelie PC, Rietveld T, Swart GR, Stijnen T, van den Berg JW (1994) Effect of dietary fish oil on blood levels of free fatty acids, ketone bodies and triacylglycerol in humans. Lipids 29(1):41–45CrossRefPubMedGoogle Scholar
  13. 13.
    Davis JM, Bailey SP, Woods JA, Galiano FJ, Hamilton MT, Bartoli WP (1992) Effects of carbohydrate feedings on plasma free tryptophan and branched-chain amino acids during prolonged cycling. Eur J Appl Physiol 65(6):513–519CrossRefGoogle Scholar
  14. 14.
    Singer P, Wirth M, Berger I (1990) A possible contribution of decrease in free fatty acids to low serum triglyceride levels after diets supplemented with n-6 and n-3 polyunsaturated fatty acids. Atherosclerosis 83(2–3):167–175CrossRefPubMedGoogle Scholar
  15. 15.
    Foster C (1998) Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc 30(7):1164–1168CrossRefPubMedGoogle Scholar
  16. 16.
    Harrison GG, Buskirk ER, Carter JEL, Johnston FE, Lohman TG, Pollock ML (1992) Skinfold thicknesses and measurements technique. In: Lohman TG, Roche AF, Martorell R (eds) Anthropometric standardization reference manual. Human Kinetics Books, Champaign, pp 55–80Google Scholar
  17. 17.
    Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, Bemben DA (1988) Skinfold equations for estimation of body fatness in children and youth. Hum Biol 60(5):709–723PubMedGoogle Scholar
  18. 18.
    Anderson T, Kearney JT (1982) Effects of three resistance training programs on muscular strength and absolute and relative endurance. Res Quart Exerc Sport 53(1):1–7. doi: 10.1080/02701367.1982.10605218 CrossRefGoogle Scholar
  19. 19.
    DeFina LF, Marcoux LG, Devers SM, Cleaver JP, Willis BL (2011) Effects of omega-3 supplementation in combination with diet and exercise on weight loss and body composition. Am J Clin Nutr 93(2):455–462. doi: 10.3945/ajcn.110.002741 CrossRefPubMedGoogle Scholar
  20. 20.
    Smith GI, Julliand S, Reeds DN, Sinacore DR, Klein S, Mittendorfer B (2015) Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am J Clin Nutr 102(1):115–122. doi: 10.3945/ajcn.114.105833 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Davidson MH (2006) Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am J Cardiol 98(4A):27i–33i. doi: 10.1016/j.amjcard.2005.12.024 CrossRefPubMedGoogle Scholar
  22. 22.
    Flachs P, Horakova O, Brauner P, Rossmeisl M, Pecina P, Franssen-van Hal N, Ruzickova J, Sponarova J, Drahota Z, Vlcek C, Keijer J, Houstek J, Kopecky J (2005) Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce beta-oxidation in white fat. Diabetologia 48(11):2365–2375. doi: 10.1007/s00125-005-1944-7 CrossRefPubMedGoogle Scholar
  23. 23.
    Rodacki CL, Rodacki AL, Pereira G, Naliwaiko K, Coelho I, Pequito D, Fernandes LC (2012) Fish-oil supplementation enhances the effects of strength training in elderly women. Am J Clin Nutr 95(2):428–436. doi: 10.3945/ajcn.111.021915 CrossRefPubMedGoogle Scholar
  24. 24.
    Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, Mittendorfer B (2011) Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia–hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci 121(6):267–278. doi: 10.1042/CS20100597 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, Mittendorfer B (2011) Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr 93(2):402–412. doi: 10.3945/ajcn.110.005611 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2016

Authors and Affiliations

  • Dhiego Mangilli Crestani
    • 1
  • Érick Fernando Rodrigues Bonin
    • 1
  • Ricardo Augusto Barbieri
    • 2
  • Alessandro Moura Zagatto
    • 2
    • 3
  • Wonder Passoni Higino
    • 4
  • Fabio Milioni
    • 1
    • 2
    • 3
    Email author
  1. 1.UNISALESIANO-Catholic Center UniversityLinsBrazil
  2. 2.Post Graduate Program of Movement ScienceUNESP-Univ Estadual PaulistaRio ClaroBrazil
  3. 3.Laboratory of Physiology and Sport Performance (LAFIDE), Department of Physical EducationUNESP-Univ Estadual Paulista, BauruBauruBrazil
  4. 4.Department of Physical EducationIFSULDEMINAS-Federal Institute of Education, Science and Technology of South of Minas Gerais, MuzambinhoMuzambinhoBrazil

Personalised recommendations