Skip to main content
Log in

Metabolomics analysis of liver reveals profile disruption in bovines upon steroid treatment

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The surveillance of illegal anabolic practices in bovine meat production is necessary to guarantee consumers’ health. Screening strategies based on the recognition of indirect biological effects are considered by the community as promising tools to overcome some limitations of classical analytical methods and might therefore concur to ensure safer food for the consumer.

Objectives

The present work aims at characterizing the metabolic profile induced in liver by administration of anabolic steroids, and at identifying potential disturbances in the hepatic metabolism.

Methods

A total of 32 liver samples, 16 from untreated bulls and 16 from bulls treated with an ear implant (Revalor-XS®) containing trenbolone acetate (200 mg) and β-estradiol (40 mg), were analyzed following a LC–MS-based metabolomic analysis combining RP and HILIC chromatographic separations. Different multivariate statistical tools were applied to the datasets to select common metabolites that may be considered as potential markers based on their significant changes in concentrations after administration of sexual steroids.

Results

Eight candidate markers were identified. Moreover, a subset of four markers was also validated by a different laboratory that performed the same analysis using an independent instrumental and elaboration platform, confirming the robustness of the results achieved.

Conclusion

This study was performed mimicking experimental conditions that may be used during a potential misuse practice. It is promising in the objective of setting up an analytical strategy to highlight sexual steroids abuse in livestock animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PCA:

Principal component analysis

PLS-DA:

Partial least square discriminant analysis

SVM:

Support vector machine

RF:

Random forest

TBA:

Trenbolone acetate

E2:

Estradiol

MS:

Mass spectrometry

HRMS:

High resolution mass spectrometry

HCD:

Higher energy C-trap dissociation

LC:

Liquid chromatography

RP:

Reversed phase

HILIC:

Hydrophilic interaction liquid chromatography

C:

Control

T:

Treated

T/C:

Ratio between treated and control group

ESI:

Electrospray ionization

QC:

Quality control

FWHM:

Full width at half maximum

References

  • Baptissart, M., Vega, A., Martinot, E., Baron, S., Lobaccaro, J. M. A., & Volle, D. H. (2013). Farnesoid X receptor alpha: A molecular link between bile acids and steroid signaling? Cellular and Molecular Life Sciences, 70(23), 4511–4526.

    Article  CAS  PubMed  Google Scholar 

  • Boyard-Kieken, F., Dervilly-Pinel, G., Garcia, P., Paris, A. C., Popot, M. A., Le Bizec, B., & Bonnaire, Y. (2011). Comparison of different liquid chromatography stationary phases in LC–HRMS metabolomics for the detection of recombinant growth hormone doping control. Journal of Separation Science, 34(24), 3493–3501.

    Article  CAS  PubMed  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Chiang, J. Y. (2009). Bile acids: Regulation of synthesis. Journal of Lipid Research, 50(10), 1955–1966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christofk, H. R., van der Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., & Wei, R. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452(7184), 230–233.

    Article  CAS  PubMed  Google Scholar 

  • Ambroise, C., & McLachlan, G. J. (2002). Selection bias in gene extraction on the basis of microarray gene-expression data. Proceedings of the National Academy of Sciences, 99(10), 6562–6566.

    Article  CAS  Google Scholar 

  • Comitato, R., Saba, A., Turrini, A., Arganini, C., & Virgili, F. (2015). Sex hormones and macronutrient metabolism. Critical Reviews in Food Science and Nutrition, 55(2), 227–241.

    Article  CAS  PubMed  Google Scholar 

  • Commission Decision 2002/657/EC. (2002). Implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official Journal of European Communities, L221, 8.

    Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Google Scholar 

  • Council Directive 2003/74/EC. (2003). Amending Council Directive 96/22/EC concerning the prohibition on the use in stockfarming of certain substances having a hormonal or thyrostatic action and of beta-agonists. Official Journal of European Communities, L262, 17–21.

    Google Scholar 

  • Council Directive 2008/97/EC. (2008). Amending Council Directive 96/22/EC concerning the prohibition on the use in stockfarming of certain substances having a hormonal or thyrostatic action and of beta-agonists. Official Journal of European Communities, L318, 9–11.

    Google Scholar 

  • Council Directive 86/609/EEC. (1986). On the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. Official Journal of European Communities, L358, 1.

    Google Scholar 

  • Council Directive 96/22/EC. (1996). Concerning the prohibition on the use in stockfarming of certain substances having a hormonal or thyrostatic action and of beta-agonists, and repealing Directives 81/602/EEC, 88/146/EEC and 88/299/EEC. Official Journal of European Communities, L125, 3–9.

    Google Scholar 

  • Council Directive 96/23/EC. (1996). On measures to monitor certain substances and residues thereof in live animals and animal products and repealing Directives 85/358/EEC and 86/469/EEC and Decisions 89/187/EEC and 91/664/EEC. Official Journal of European Communities, L125, 10–32.

    Google Scholar 

  • Courtheyn, D., LeBizec, B., Brambilla, G., DeBrabander, H. F., Cobbaert, E., van de Wiele, M., Vercammen, J., & De Wasch, K. (2002). Recent developments in the use and abuse of growth promoters. Analytica Chimica Acta, 473(1–2), 71–82.

    Article  CAS  Google Scholar 

  • Craig, A., Cloarec, O., Holmes, E., Nicholson, J. K., & Lindon, J. C. (2006). Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Analytical Chemistry, 78(7), 2262–2267.

    Article  CAS  PubMed  Google Scholar 

  • De Brabander, H. F., Noppe, H., Verheyden, K., Vanden Bussche, J., Wille, K., Okerman, L., Vanhaecke, L., Reybroeck, W., Ooghe, S., & Croubels, S. (2009). Residue analysis: Future trends from a historical perspective. Journal of Chromatography A, 1216(46), 7964–7976.

    Article  PubMed  Google Scholar 

  • Decreto Legislativo n. 116. (1992). Attuazione della direttiva (CEE) n. 609/86 in materia di protezione degli animali utilizzati a fini sperimentali o ad altri fini scientifici. Gazzetta Ufficiale 40(33).

  • Dervilly-Pinel, G., Chereau, S., Cesbron, N., Monteau, F., & Le Bizec, B. (2015). LC-HRMS based metabolomics screening model to detect various β-agonists treatments in bovines. Metabolomics, 11(2), 403–411.

    Article  CAS  Google Scholar 

  • Dervilly-Pinel, G., Prévost, S., Monteau, F., & Le Bizec, B. (2014). Recombinant bovine somatotropin: An overview of analytical strategies to detect its use in food producing animals. Trends in Analytical Chemistry, 53, 1–10.

    Article  CAS  Google Scholar 

  • Directive 2010/63/EU. (2010). On the protection of animals used for scientific purposes Text with EEA relevance. Official Journal of European Communities, L276, 33–79.

    Google Scholar 

  • Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., Brown, M., Knowles, J. D., Halsall, A., Haselden, J. N., Nicholls, A. W., Wilson, I. D., Kell, D. B., Goodacre, R., & Human Serum Metabolome (HUSERMET) Consortium (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060–1083.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, L., Johansson, E., Kettapeh-Wold, S., & Wold, S. (1999). Introduction to multi- and megavariate data analysis using projection methods (PCA & PLS). Umeå: Umetrics.

    Google Scholar 

  • Gallart-Ayala, H., Chéreau, S., Dervilly-Pinel, G., & Le Bizec, B. (2015). Potential of mass spectrometry metabolomics for chemical food safety. Bioanalysis, 7(1), 133–146.

    Article  CAS  PubMed  Google Scholar 

  • Gowda, G. A., Zhang, S., Gu, H., Asiago, V., Shanaiah, N., & Raftery, D. (2008). Metabolomics-based methods for early disease diagnostics. Expert Review of Molecular Diagnostics, 8(5), 617–633.

    Article  CAS  PubMed  Google Scholar 

  • Hendriks, M. M. W. B., van Eeuwijk, F. A., Jellema, R. H., Westerhuis, J. A., Reijmers, T. H., Hoefsloot, H. C. J., & Smilde, A. K. (2011). Data-processing strategies for metabolomics studies. TrAC Trends in Analytical Chemistry, 30(10), 1685–1698.

    Article  CAS  Google Scholar 

  • Jacob, C. C., Dervilly-Pinel, G., Biancotto, G., Monteau, F., & Le Bizec, B. (2015). Global urine fingerprinting by LC-ESI(+)-HRMS for better characterization of metabolic pathway disruption upon anabolic practices in bovine. Metabolomics, 11(1), 184–197.

    Article  CAS  Google Scholar 

  • Johnson, B. J., Anderson, P. T., Meiske, J. C., & Dayton, W. R. (1996). Effect of a combined trenbolone acetate and estradiol implant on feedlot performance, carcass characteristics, and carcass composition of feedlot steers. Journal of Animal Science, 74(2), 363–371.

    Article  CAS  PubMed  Google Scholar 

  • Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). Kernlab—An S4 package for Kernel methods in R. Journal of Statistical Software, 11(9), 1–20.

    Article  Google Scholar 

  • Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1–26.

    Article  Google Scholar 

  • Leoni, V., Strittmatter, L., Zorzi, G., Zibordi, F., Dusi, S., Garavaglia, B., Venco, P., Caccia, C., Souza, A. L., Deik, A., Clish, C. B., Rimoldi, M., Ciusani, E., Bertini, E., Nardocci, N., Mootha, V. K., & Tiranti, V. (2012). Metabolic consequences of mitochondrial coenzyme A deficiency in patients with PANK2 mutations. Molecular Genetics and Metabolism, 105(3), 463–471.

    Article  CAS  PubMed  Google Scholar 

  • Levinson, D. J., & Decker, D. E. (1984). Imprinting by the neonatal testis: A mechanism for sexual dimorphism of rat liver xanthine oxidase. Advances in Experimental Medicine and Biology, 165, 519–523.

    Article  PubMed  Google Scholar 

  • Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.

    Google Scholar 

  • Lipmann, F., Kaplan, N. O., Novelli, G. D., Tuttle, L. C., & Guirard, B. M. (1947). Coenzyme for acetylation, a pantothenic acid derivative. The Journal of Biological Chemistry, 167(3), 689.

    Google Scholar 

  • Mevik, B. H., Wehrens, R., & Hovde Liland, K. (2011). PLS: Partial least squares and principal component regression. R package version 2.3.

  • Milona, A., Owen, B. M., Cobbold, J. F. L., Willemsen, E. C. L., Cox, I. J., Boudjelal, M., Cairns, W., Schoonjans, K., Taylor-Robinson, S. D., Klomp, L. W. J., Parker, M. G., White, R., van Mil, S. W. C., & Williamson, C. (2010). Raised hepatic bile acid concentrations during pregnancy in mice are associated with reduced farnesoid X receptor function. Hepatology (Baltimore, Md.), 52(4), 1341–1349.

    Article  CAS  Google Scholar 

  • Monte, M. J., Marin, J. J., Antelo, A., & Vazquez-Tato, J. (2009). Bile acids: Chemistry, physiology, and pathophysiology. World Journal of Gastroenterology, 15(7), 804–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran, C., Quirke, J. F., Prendiville, D. J., Bourke, S., & Roche, J. F. (1991). The effect of estradiol, trenbolone acetate or zeranol on growth rate, mammary development, carcass traits and plasma estradiol concentrations of beef heifers. Journal of Animal Science, 69(11), 4249–4258.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, J. K., Connelly, J., Lindon, J. C., & Holmes, E. (2002). Metabonomics: A platform for studying drug toxicity and gene function. Nature Reviews Drug Discovery, 1(2), 153–161.

    Article  CAS  PubMed  Google Scholar 

  • Nocairi, H., Qannari, E. M., Vigneau, E., & Bertrand, D. (2005). Discrimination on latent components with respect to patterns. Application to multicollinear data. Computational Statistics & Data Analysis, 48(1), 139–147.

    Article  Google Scholar 

  • Novelli, G. D. (1953). Metabolic functions of pantothenic acid. Physiological Reviews, 33, 525–543.

    CAS  PubMed  Google Scholar 

  • Nyamundanda, G., Gormley, I. C., & Brennan, L. (2010). Probabilistic principal components analysis for metabolomic data. BMC Bioinformatics, 11, 571.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nzoughet, J. K., Dervilly-Pinel, G., Chéreau, S., Biancotto, G., Monteau, F., Elliott, C. T., & Le Bizec, B. (2015a). First insights into serum metabolomics of trenbolone/estradiol implanted bovines; screening model to predict hormone-treated and control animals’ status. Metabolomics, 11(5), 1184–1196.

    Article  Google Scholar 

  • Nzoughet, J. K., Gallart-Ayala, H., Biancotto, G., Hennig, K., Dervilly-Pinel, G., & Le Bizec, B. (2015b). Hydrophilic interaction (HILIC) and reverse phase liquid chromatography (RPLC)–high resolution MS for characterizing lipids profile disruption in serum of anabolic implanted bovines. Metabolomics, 11(6), 1884–1896.

    Article  CAS  Google Scholar 

  • Pegolo, S., Di Camillo, B., Montesissa, C., Cannizzo, F. T., Biolatti, B., & Bargelloni, L. (2015). Toxicogenomic markers for corticosteroid treatment in beef cattle: Integrated analysis of transcriptomic data. Food and Chemical Toxicology, 77, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Pinel, G., Weigel, S., Antignac, J. P., Mooney, M. H., Elliott, C., Nielen, M. W. F., & Le Bizec, B. (2010). Targeted and untargeted profiling of biological fluids to screen for anabolic practices in cattle. Trends in Analytical Chemistry, 29(11), 1269–1280.

    Article  CAS  Google Scholar 

  • R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/..

  • Regal, P., Anizan, S., Antignac, J. P., Le Bizec, B., Cepeda, A., & Fente, C. (2011). Metabolomic approach based on liquid chromatography coupled to high resolution mass spectrometry to screen for the illegal use of estradiol and progesterone in cattle. Analytica Chimica Acta, 700(1–2), 16–25.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, B. A., Tatum, J. D., Engle, T. E., & Bryant, T. C. (2007). Effects of heifer finishing implants on beef carcass traits and longissimus tenderness. Journal of Animal Science, 85(8), 2019–2030.

    Article  CAS  PubMed  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification. Analytical Chemistry, 78, 779–787.

    Article  CAS  PubMed  Google Scholar 

  • Stolker, A. A. M., & Brinkman, U. A. T. (2005). Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals—A review. Journal of Chromatography A, 1067(1–2), 15–53.

    Article  CAS  PubMed  Google Scholar 

  • Tahiliani, A. G., & Beinlich, C. J. (1991). Pantothenic acid in health and disease. Vitamins and Hormones, 46, 165–228.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J., & Schoonjans, K. (2008). Targeting bile-acid signalling for metabolic diseases. Nature Reviews Drug Discovery, 7(8), 678–693.

    Article  CAS  PubMed  Google Scholar 

  • van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 8(7), 142.

    Article  Google Scholar 

  • Want, E., Masson, P., Michopoulos, F., Wilson, I. D., Theodoridis, G., Plumb, R. S., Shockcor, J., Loftus, N., Holmes, E., & Nicholson, J. K. (2013). Global metabolic profiling of animal and human tissues via UPLC-MS. Nature Protocols, 8(1), 17–32.

    Article  CAS  PubMed  Google Scholar 

  • White, M. E., Johnson, B. J., Hathaway, M. R., & Dayton, W. R. J. (2003). Growth factor messenger RNA levels in muscle and liver of steroid-implanted and nonimplanted steers. Journal of Animal Science, 81(4), 965–972.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, I. D., Nicholson, J. K., Castro-Perez, J., Granger, J. H., Johnson, K. A., Smith, B. W., & Plumb, R. S. (2005). High resolution “ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. Journal of Proteome Research, 4(2), 591–598.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, T., Jaroenporn, S., Pan, L., Azumano, I., Onda, M., Nakamura, K., Watanabe, G., & Taya, K. (2009). Effects of pantothenic acid on testicular function in male rats. The Journal of Veterinary Medical Science, 71(11), 1427–1432.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Italian Ministry of Health (Project No. IZS VE 2008 RF 1157188, and Project No. IZS VE RC 01/2012 - CUP B28C13000350001). Authors thank Merck Animal Health (NJ, United States) for kindly providing the ear implants Revalor-XS®.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Biancotto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human and animal rights

All institutional and national guidelines for the care and use of laboratory animals were followed. Animals were managed according to Directive 86/609/EEC for the protection of animals used for experimental or other scientific purposes, enforced by the Italian D. Lgs No 116 of January 27, 1992 and Directive 63/2010. The animal study was approved by the Animal Experimentation Ethical Committee of the University of Bologna and was therefore performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11306_2017_1220_MOESM1_ESM.eps

Principal component analysis (PCA) performed on metabolic fingerprints to evaluate the quality of the different analytical sequences. Metabolic profiles were acquired applying different chromatographic and ionization conditions: HILIC in positive ionization mode (A), HILIC in negative ionization mode (B), RPLC in positive ionization mode (C), and RPLC in negative ionization mode (D). Quality Control (QC) samples (yellow circles) are clustered together in each of the four plot, indicating the stability and repeatability of the analytical sequence. Frames exhibiting a CV% below 30% in QC samples were used, corresponding to: 777 frames (A), 599 frames (B), 795 frames (C), and 526 frames (D). A 2 components PCA is depicted in each plot. Control samples are represented by blue circles, while treated samples are represented by red circles

Supplementary material 1 (EPS 444 KB)

11306_2017_1220_MOESM2_ESM.eps

Plots reporting the number of principal components against variance value for the PCA performed in order to separate samples (see Fig. 1). For each dataset analyzed using the different instrumental conditions reported in materials and methods section, a chart reports the amount of variance absorbed by each principal component added to the PCA: HILIC in positive ionization mode (A), HILIC in negative ionization mode (B), RPLC in positive ionization mode (C), and RPLC in negative ionization mode (D)

Supplementary material 2 (EPS 592 KB)

Supplementary material 3 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stella, R., Dervilly-Pinel, G., Bovo, D. et al. Metabolomics analysis of liver reveals profile disruption in bovines upon steroid treatment. Metabolomics 13, 80 (2017). https://doi.org/10.1007/s11306-017-1220-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1220-0

Keywords

Navigation