Skip to main content

Advertisement

Log in

Cysteine-rich low molecular weight antimicrobial peptides from Brevibacillus and related genera for biotechnological applications

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The production of natural antimicrobial peptides (AMPs) is an innate immunity trait of all life forms including eukaryotes and prokaryotes. While these AMPs are usually called as defensins in eukaryotes, they are known as bacteriocins in prokaryotes. Bacteriocins are more diverse AMPs considering their varied composition and posttranslational modifications. Accordingly, this review is focused on cysteine-rich AMPs resembling eukaryotic defensins such as laterosporulin from Brevibacillus spp. and associated peptides secreted by the members of related genera. In fact, structural studies of laterosporulin showed the pattern typically observed in human defensins and therefore, should be considered as bacterial defensin. Although the biosynthesis mechanism of bacterial defensins displayed high similarities, variations in amino acid composition and structure provided the molecular basis for a better understanding of their properties. They are reported to inhibit Gram-positive, Gram-negative, non-multiplying and human pathogenic bacteria. The extreme stability is due to the presence of intra-molecular disulfide bonds in prokaryotic defensins and reveals their potential clinical and food preservation applications. Notably, they are also reported to have potential anticancer properties. Therefore, this review is focused on multitude of diverse applications of bacterial defensins, exploring the possible correlations between their structural, functional and possible biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahern M, Verschueren S, van Sinderen D (2003) Isolation and characterization of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol Lett 220:127–131

    Article  CAS  Google Scholar 

  • Altena K, Guder A, Cramer C, Bierbaum G (2000) Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl Environ Microbiol 66:2565–2571

    Article  CAS  Google Scholar 

  • Appleyard AN, Choi S, Read DM et al (2009) Dissecting structural and functional diversity of the lantibiotic mersacidin. Chem Biol 16:490–498

    Article  CAS  Google Scholar 

  • Arnison PG, Bibb MJ, Bierbaum G et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160

    Article  CAS  Google Scholar 

  • Baindara P, Chaudhry V, Mittal G, Liao LM, Matos CO, Khatri N, Franco OL, Patil PB, Korpole S (2016a) Characterization of the antimicrobial peptide penisin, a class Ia novel lantibiotic from Paenibacillus sp. strain A3. Antimicrob Agents Chemother 60:580–591

    Article  CAS  Google Scholar 

  • Baindara P, Singh N, Ranjan M, Nallabelli N, Chaudhry V et al (2016b) Laterosporulin10: a novel defensin like class IId bacteriocin from Brevibacillus sp. strain SKDU10 with inhibitory activity against microbial pathogens. Microbiology 162:1286–1299

    Article  CAS  Google Scholar 

  • Baindara P, Gautam A, Raghava GPS, Korpole S (2017). Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci Rep 7:46541

    Article  CAS  Google Scholar 

  • Bastos, MCF, Ceotto H (2011) Bacterial antimicrobial peptides and food preservation. In: Ray M, Chikindas M (eds) Natural antimicrobials in food safety and quality. CAB International, Wallingford, pp 62–76

    Chapter  Google Scholar 

  • Bernbom N, Licht TR, Brogren CH, Jelle B, Johansen AH, Badiola I et al (2006) Effects of Lactococcus lactis on composition of intestinal microbiota: role of nisin. Appl Environ Microbiol 72:239–244

    Article  CAS  Google Scholar 

  • Brotz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42:154–160

    CAS  Google Scholar 

  • Bruhn H (2005) A short guided tour through functional and structural features of saposin-like proteins. Biochem J 389:249–257

    Article  CAS  Google Scholar 

  • Chatterjee S, Chatterjee S, Lad SJ, Phansalkar MS, Rupp RH, Ganguli BN et al (1992) Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization. J Antibiot (Tokyo) 45:832–838

    Article  CAS  Google Scholar 

  • Chatterjee C, Paul M, Xie L, van der Donk WA (2005) Biosynthesis and mode of action of lantibiotics. Chem Rev 105:633–684

    Article  CAS  Google Scholar 

  • Chehimi S, Pons AM, Sablé S, Hajlaoui MR, Limam F (2010) Mode of action of thuricin S, a new class IId bacteriocin from Bacillus thuringiensis. Can J Microbiol 56:162–167

    Article  CAS  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R et al (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  CAS  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  CAS  Google Scholar 

  • Cotter PD, Ross RP, Hill C (2013) Bacteriocins-a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105

    Article  CAS  Google Scholar 

  • Daniels R, Mellroth P, Bernsel A, Neiers F, Normark S, von Heijne G, Henriques-Normark B (2010) Disulfide bond formation and cysteine exclusion in gram-positive bacteria. J Biol Chem 285:3300–3309

    Article  CAS  Google Scholar 

  • Dimarcq JL, Bulet P, Hetru C, Hoffmann J (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biolpolymers 47:465–477

    Article  CAS  Google Scholar 

  • Duc LH, Honz HA, Barbosa, Henriques AO, Cutting SM (2004) Characterization of bacillus probiotics available for human use. Appl Environ Microbiol 70:2161–2171

    Article  CAS  Google Scholar 

  • Eijsink VGH, Skeie M, Middelhoven PH, BrurbergMB, Nes IF (1998) Comparative Studies Of Class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 64:3275–3281

    CAS  Google Scholar 

  • Fimland G, Johnsen L, Axelsson L, Brurberg MB, Nes IF, Eijsink VGH, Nissen-Meyer J (2000) C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. J Bacteriol 182:2643–2648

    Article  CAS  Google Scholar 

  • Flühe L et al (2012) The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat Chem Biol 8:350–357

    Article  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. Experientia 35:406–407

    Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  CAS  Google Scholar 

  • Gao B, Rodriguez MC, Lanz-Mendoza H, Zhu S (2009) AdDLP, a bacterial defensin-like peptide, exhibits anti-Plasmodium activity. Biochem Biophys Res Commun 387:393–398

    Article  CAS  Google Scholar 

  • Garg N, Tang W, Goto Y, Nair SK, van der Donk WA (2012) Lantibiotics from Geobacillus thermodenitrificans. Proc Natl Acad Sci USA 109:5241–5246

    Article  CAS  Google Scholar 

  • Giuliani A, Pirri G, Rinaldi AC (2010) Antimicrobial peptides: the LPS connection. Methods Mol Biol 618:137–154

    Article  CAS  Google Scholar 

  • Gong W, Wang J, Chen Z et al (2011) Solution structure of LCI, a novel antimicrobial peptide from Bacillus subtilis. BioChemistry 50:3621–3627

    Article  CAS  Google Scholar 

  • Gross E, Morell JL (1971) The structure of nisin. J Am Chem Soc 93:4634–4635

    Article  CAS  Google Scholar 

  • Gross E, Kiltz HH, Nebelin E (1973) Subtilin, VI: the structure of subtilin. Hoppe-Seyler’s Z Physiol Chem 354:810–812

    CAS  Google Scholar 

  • Gunasekera S, Daly NL, Anderson MA, Craik Dj (2006) Chemical synthesis and biosynthesis of the cyclotide family of circular proteins. IUBMB Life 58:515–524

    Article  CAS  Google Scholar 

  • Hatahet F, Boyd D, Beckwith J (2014) Disulfide bond formation in prokaryotes: history, diversity and design. Biochim Biophys Acta 1844:1402–1414

    Article  CAS  Google Scholar 

  • Hong HA, Huang J-M, Khaneja R, Hiep LV, Urdaci MC, Cutting SM (2008) The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J Appl Microbiol 105:510–520

    Article  CAS  Google Scholar 

  • Inaba K (2009) Disulfide bond formation system in Escherichia coli. J Biochem 146:591–597

    Article  CAS  Google Scholar 

  • Jansen EF, Hirschmann DJ (1944) Subtilin, an antibacterial product of Bacillus subtilis: culturing conditions and properties. Arch Biochem 4:297–304.

    CAS  Google Scholar 

  • Kagan BL, Selsted ME, Ganz T, Lehrer RI (1990) Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci 87:210–214.

    Article  CAS  Google Scholar 

  • Karlyshev AV, Melnikov VG, Chikindas ML (2014) Draft genome sequence of Bacillus subtilis strain KATMIRA1933. Genome Announc 2:e00619–14.

    Google Scholar 

  • Kawulka KE, Sprules T, Diaper CM, Whittal RM, McKay RT, Mercier P, Zuber P, Vederas JC (2004) Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alpha-amino acid derivatives. BioChemistry 43:3385–3395

    Article  CAS  Google Scholar 

  • Kellner R et al (1988) Gallidermin: a new lanthionine-containing polypeptide antibiotic. Eur J Biochem 177:53–59

    Article  CAS  Google Scholar 

  • Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A (2004) Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother 54:648–653

    Article  CAS  Google Scholar 

  • Lawton EM, Cotter PD, Hill C, Ross RP (2007) Identification of a novel two-peptide lantibiotic, Haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol Lett 267:64–67

    Article  CAS  Google Scholar 

  • Lee H, Churey J, Worobo RW (2009) Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol Lett 299:205–213

    Article  CAS  Google Scholar 

  • Lohans CT, Vederas JC (2014) Structural characterization of thioether-bridged bacteriocins. J Antibiotics 67:23–30

    Article  CAS  Google Scholar 

  • Marshall E, Costa LM, Gutierrez-Marcos J (2011) Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development. J Exp Bot 62:1677–1686

    Article  CAS  Google Scholar 

  • Nagy K, Mikuláss KR, Végh AG, Kereszt A, Kondorosi E, Váró G, Szegletes Z (2015) Interaction of cysteine-rich cationic antimicrobial peptides with intact bacteria and model membranes. Gen Physiol Biophys 34:135–144

    Article  CAS  Google Scholar 

  • Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 61(3):174–229

    Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472

    Article  CAS  Google Scholar 

  • Noll S, Sinko PJ, Chikindas ML (2011) Elucidation of the molecular mechanisms of action of the natural antimicrobial peptide subtilosin against the bacterial vaginosis-associated pathogen Gardnerella vaginalis.. Probiotics Antimicrob Proteins 3:41–47

    Article  CAS  Google Scholar 

  • Oman TJ, Boettcher JM, Wang H, Okalibe XN, van der Donk WA (2011) Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat Chem Biol 7:78–80

    Article  CAS  Google Scholar 

  • Paiva AD, Breukink E, Mantovani HC (2011) Role of lipid II and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrob Agents Chemother 55:5284–5293

    Article  CAS  Google Scholar 

  • Parison J, Carey S, Breukink E, Chan WC, Narbad A, Bonev B (2008) Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrob Agents Chemother 52:612–618

    Article  Google Scholar 

  • Patil NA, Tailhades J, Hughes RA, Separovic F, John DW, Hossain MA (2015) Cellular disulfide bond formation in bioactive peptides and proteins. Int J Mol Sci 16:1791–1805

    Article  CAS  Google Scholar 

  • Prasch T, Naumann T, Markert RL, Sattler M, Schubert W, Schaal S, Bauch M, Kogler H, Griesinger C (1997) Constitution and solution conformation of the antibiotic mersacidin determined by NMR and molecular dynamics. Eur J Biochem 244:501–512

    Article  CAS  Google Scholar 

  • Rea MC, Sit CS, Clayton E, O’Connor PM, Whittal RM, Zheng J, Vederas JC, Ross RP, Hill C (2010) Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Natl Acad Sci 107: 9352–9357.

    Article  CAS  Google Scholar 

  • Ross AC, John C Vederas (2011) Fundamental functionality: recent developments in understanding the structure–activity relationships of lantibiotic peptides. J Antibiotics 64:27–34

    Article  CAS  Google Scholar 

  • Schneider TR, Karcher J, Pohl E, Lubini P, Sheldrick GM (2000) Ab initio structure determination of the lantibiotic mersacidin. Acta Cryst D Biol Crystallogr 56:705–713.

    Article  CAS  Google Scholar 

  • Silverstein KAT, Moskal WA, Wu HC et al (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J 51:262–280

    Article  CAS  Google Scholar 

  • Singh PK, Chittpurna, Ashish, Sharma V, Patil PB, Korpole S (2012) Identification, purification and characterization of laterosporulin, a novel bacteriocin produced by Brevibacillus sp. strain GI-9. PLoS ONE 7:e31498

    Article  CAS  Google Scholar 

  • Singh PK, Solanki V, Sharma S, Thakur KG, Krishanan B, Korpole S (2015) The intramolecular disulfide-stapled structure of laterosporulin, a class IId bacteriocin, conceals a human defensin-like structural module. FEBS J 282:203–214

    Article  CAS  Google Scholar 

  • Sirtori LR, Cladera-Olivera F, Lorenzini DM, Tsai SM, Brandelli A (2006) Purification and partial characterization of an antimicrobial peptide produced by Bacillus sp. strain P45, a bacterium from the Amazon basin fish Piaractus mesopotamicus. J Gen Appl Microbiol 52:357–363

    Article  CAS  Google Scholar 

  • Sit CS, van Belkum MJ, McKay RT, Worobo RW, Vederas JC (2011) The 3D solution structure of thurincin H, a bacteriocin with four sulfur to α-Carbon crosslinks. Angew Chem Int Ed 50:8718–8721

    Article  CAS  Google Scholar 

  • Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML (2008) Isolation of the Bacillus subtilis antimicrobial peptide from the dairy product-derived Bacillus amyloliquefaciens. J Appl Microbiol 104:1067–1074

    Article  CAS  Google Scholar 

  • Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331

    Article  CAS  Google Scholar 

  • Teng Y, Zhao W, Qian C, Li Q, Zhu L, Wu X (2012) Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by Paenibacillus elgii B69. BMC Microbiol 12:45

    Article  CAS  Google Scholar 

  • Wiedmann I et al (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772–1779

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suresh Korpole or Vishakha Grover.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baindara, P., Kapoor, A., Korpole, S. et al. Cysteine-rich low molecular weight antimicrobial peptides from Brevibacillus and related genera for biotechnological applications. World J Microbiol Biotechnol 33, 124 (2017). https://doi.org/10.1007/s11274-017-2291-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2291-9

Keywords

Navigation