Skip to main content

Advertisement

Log in

Copper Oxide Nanoparticle and Copper (II) Ion Exposure in Oryza sativa Reveals Two Different Mechanisms of Toxicity

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The effects of CuO NPs and bulk Cu at 0–1000 mg L−1 on the growth, photosynthesis and biochemical parameters were investigated in 30-day-old rice plants grown hydroponically. ICP-OES measurements showed that CuO NPs released ≤ 1 mg L−1 of Cu2+ ions compared with ≤ 81 mg L−1 by bulk Cu at their highest concentration. Both treatments showed that growth, photo-phosphorylation and carbon dioxide assimilation declined considerably. Bulk particles caused oxidative stress whereas NP showed no such effect. Electromicrographs showed that CuO NPs accumulated in chloroplasts resulting in destacking and distortions of thylakoid membranes while bulk Cu showed no such behaviour. Results suggest that NP affected the growth by accumulation in non-ionic form in chloroplasts causing damage to thylakoid membrane without oxidative damage, whereas the bulk Cu affected the growth by causing oxidative damage as a result of release of Cu2+ ions without affecting the ultrastructure of the chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., et al. (2015). The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research, 22(11), 8148–8162.

    CAS  Google Scholar 

  • Alia, & Saradhi, P. P. (1991). Proline accumulation under heavy metal stress. Journal of Plant Physiology, 138(5), 554–558.

    CAS  Google Scholar 

  • Ando, Y., Nagata, S., Yanagisawa, S., & Yoneyama, T. (2013). Copper in xylem and phloem saps from rice (Oryza sativa): the effect of moderate copper concentrations in the growth medium on the accumulation of five essential metals and a speciation analysis of copper-containing compounds. Functional Plant Biology, 40(1), 89–100.

    CAS  Google Scholar 

  • Andrés-Colás, N., Sancenón, V., Rodríguez-Navarro, S., Mayo, S., Thiele, D. J., Ecker, J. R., et al. (2006). The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. The Plant Journal, 45(2), 225–236.

    Google Scholar 

  • Andrés-Colás, N., Perea-García, A., Puig, S., & Penarrubia, L. (2010). Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles. Plant Physiology, 153(1), 170–184.

    Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    CAS  Google Scholar 

  • Boonyanitipong, P., Kositsup, B., Kumar, P., Baruah, S., & Dutta, J. (2011). Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. International Journal of Bioscience, Biochemistry and Bioinformatics, 1(4), 282.

    Google Scholar 

  • Boveris, A. (1984). Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods in Enzymology, 105, 429–435.

    CAS  Google Scholar 

  • Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2, MR17–MR71.

    Google Scholar 

  • Cambrollé, J., Mateos-Naranjo, E., Redondo-Gómez, S., Luque, T., & Figueroa, M. E. (2011). Growth, reproductive and photosynthetic responses to copper in the yellow-horned poppy, Glaucium flavum Crantz. Environmental and Experimental Botany, 71(1), 57–64.

    Google Scholar 

  • Chaffai, R., Tekitek, A., & El Ferjani, E. (2006). A comparative study on the organic acid content and exudation in maize (Zea mays L.) seedlings under conditions of copper and cadmium stress. Asian Journal of Plant Sciences.

  • Da Costa, M. V. J., Sharma, P. K. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica, 54(1), 110–119.

  • Drążkiewicz, M., Skórzyńska-Polit, E., & Krupa, Z. (2004). Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. Biometals, 17(4), 379–387.

    Google Scholar 

  • Dresler, S., Hanaka, A., Bednarek, W., & Maksymiec, W. (2014). Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiologiae Plantarum, 36(6), 1565–1575.

    CAS  Google Scholar 

  • Ducic, T., & Polle, A. (2005). Transport and detoxification of manganese and copper in plants. Brazilian Journal of Plant Physiology, 17(1), 103–112.

    CAS  Google Scholar 

  • Edding, M., & Tala, F. (1996). Copper transfer and influence on a marine food chain. Bulletin of Environmental Contamination and Toxicology, 57(4), 617–624.

    CAS  Google Scholar 

  • Elisa, B., Marsano, F., Cavaletto, M., & Berta, G. (2007). Copper stress in Cannabis sativa roots: morphological and proteomic analysis. Caryologia, 60(1–2), 96–101.

    Google Scholar 

  • Emamverdian, A., Ding, Y., Mokhberdoran, F., & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015.

  • Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E., & Casey, P. S. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environmental Science & Technology, 41(24), 8484–8490.

    CAS  Google Scholar 

  • Gao, S., Yan, R., Cao, M., Yang, W., Wang, S., & Chen, F. (2008). Effects of copper on growth, antioxidant enzymes and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedling. Plant Soil Environment, 54(3), 117–122.

    CAS  Google Scholar 

  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1–11.

    CAS  Google Scholar 

  • Kampfenkel, K., Vanmontagu, M., & Inze, D. (1995). Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Analytical Biochemistry, 225(1), 165–167.

    CAS  Google Scholar 

  • Kennedy, C. D., & Gonsalves, F. A. N. (1987). The action of divalent zinc, cadmium, mercury, copper and lead on the trans-root potential and H+, efflux of excised roots. Journal of Experimental Botany, 38(5), 800–817.

    CAS  Google Scholar 

  • Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., et al. (2008). Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9), 1825–1851.

    CAS  Google Scholar 

  • Kopittke, P. M., Blamey, F. P. C., & Menzies, N. W. (2008). Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea. Plant and Soil, 303(1–2), 217–227.

    CAS  Google Scholar 

  • Lee, W. M., An, Y. J., Yoon, H., & Kweon, H. S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environmental Toxicology and Chemistry: An International Journal, 27(9), 1915–1921.

    CAS  Google Scholar 

  • Liao, M. T., Hedley, M. J., Woolley, D. J., Brooks, R. R., & Nichols, M. A. (2000). Copper uptake and translocation in chicory (Cichorium intybus L. cv. Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv. Rondy) plants grown in NFT system. I. Copper uptake and distribution in plants. Plant and Soil, 221(2), 135–142.

    CAS  Google Scholar 

  • Lidon, F. C., & Henriques, F. S. (1991). Limiting step on photosynthesis of rice plants treated with varying copper levels. Journal of Plant Physiology, 138(1), 115–118.

    CAS  Google Scholar 

  • Lidon, F. C., & Henriques, F. S. (1998). Role of rice shoot vacuoles in copper toxicity regulation. Environmental and Experimental Botany, 39(3), 197–202.

    CAS  Google Scholar 

  • Lin, D., Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 150(2), 243–250

  • Lin, D., & Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42(15), 5580–5585.

    CAS  Google Scholar 

  • Liu, D., Jiang, W., Meng, Q., Zou, J., Gu, J., & Zeng, M. (2009). Cytogenetical and ultrastructural effects of copper on root meristem cells of Allium sativum L. Biocell, 33(1), 25–32.

    CAS  Google Scholar 

  • Lombardi, A. T., Vieira, A. A., & Sartori, L. A. (2002). Mucilaginous capsule adsorption and intracellular uptake of copper by Kirchneriella aperta (Chlorococcales). Journal of Phycology, 38(2), 332–337.

    CAS  Google Scholar 

  • Lou, L. Q., Shen, Z. G., & Li, X. D. (2004). The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environmental and Experimental Botany, 51(2), 111–120.

    CAS  Google Scholar 

  • Manceau, A., Nagy, K. L., Marcus, M. A., Lanson, M., Geoffroy, N., Jacquet, T., & Kirpichtchikova, T. (2008). Formation of metallic copper nanoparticles at the soil− root interface. Environmental Science & Technology, 42(5), 1766–1772.

    CAS  Google Scholar 

  • Maynard, A. D. (2006). A research strategy for addressing risk. Nanotechnology, Woodrow Wilson International Center for Scholars, 444, 267–269.

    CAS  Google Scholar 

  • Mehta, S. K., & Gaur, J. P. (1999). Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. The New Phytologist, 143(2), 253–259.

    CAS  Google Scholar 

  • Moradi, F., & Ismail, A. M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany, 99(6), 1161–1173.

    CAS  Google Scholar 

  • Mosa, K. A., El-Naggar, M., Ramamoorthy, K., Alawadhi, H., Elnaggar, A., Wartanian, S., et al. (2018). Copper nanoparticles induced genotoxicty, oxidative stress, and changes in superoxide dismutase (SOD) gene expression in cucumber (Cucumis sativus) plants. Frontiers in plant science, 9.

  • Munzuroglu, O., & Geckil, H. (2002). Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Archives of Environmental Contamination and Toxicology, 43(2), 203–213.

    CAS  Google Scholar 

  • Musante, C., & White, J. C. (2012). Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environmental Toxicology, 27(9), 510–517.

    CAS  Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3), 199–216.

    CAS  Google Scholar 

  • Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., et al. (2008). Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science & Technology, 42(23), 8959–8964.

    CAS  Google Scholar 

  • Ouzounidou, G., Čiamporová, M., Moustakas, M., & Karataglis, S. (1995). Responses of maize (Zea mays L.) plants to copper stress—I. Growth, mineral content and ultrastructure of roots. Environmental and Experimental Botany, 35(2), 167–176.

    CAS  Google Scholar 

  • Panda, S. K., & Khan, M. H. (2004). Changes in growth and superoxide dismutase activity in Hydrilla verticillata L. under abiotic stress. Brazilian Journal of Plant Physiology, 16(2), 115–118.

    CAS  Google Scholar 

  • Peng, H. Y., Yang, X. E., Yang, M. J., & Tian, S. K. (2006). Responses of antioxidant enzyme system to copper toxicity and copper detoxification in the leaves of Elsholtzia splendens. Journal of Plant Nutrition, 29(9), 1619–1635.

    Google Scholar 

  • Peralta, J. R., Gardea-Torresdey, J. L., Tiemann, K. J., Gomez, E., Arteaga, S., Rascon, E., & Parsons, J. G. (2001). Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bulletin of Environmental Contamination and Toxicology, 66(6), 727–734.

    CAS  Google Scholar 

  • Peters, D. T., Brush, E. F., Kirtley, J. L. (2007). Die-cast copper rotors as strategy for improving induction motor efficiency. In 2007 Electrical Insulation Conference and Electrical Manufacturing Expo, 322-327, IEEE.

  • Pops, H. (2008). Processing of wire from antiquity to the future. Wire Journal International, 41(6), 58–66.

    CAS  Google Scholar 

  • Ren, G., Hu, D., Cheng, E. W., Vargas-Reus, M. A., Reip, P., & Allaker, R. P. (2009). Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587–590.

    CAS  Google Scholar 

  • Reznick, A. Z., & Packer, L. (1994). Oxidative damage to proteins: spectrophotometric method for carbonyl assay. In In Methods in enzymology, 233, 357–363. Academic: Press.

    Google Scholar 

  • Rico, C. M., Hong, J., Morales, M. I., Zhao, L., Barrios, A. C., Zhang, J. Y., Peralta-Videa, J. R., Gardea-Torresdey, J. L. (2013). Effect of Cerium Oxide Nanoparticles on Rice: A Study Involving the Antioxidant Defense System and In Vivo Fluorescence Imaging. Environmental Science & Technology, 47(11), 5635–5642

  • Rigo, C., Ferroni, L., Tocco, I., Roman, M., Munivrana, I., Gardin, C., et al. (2013). Active silver nanoparticles for wound healing. International Journal of Molecular Sciences, 14(3), 4817–4840.

    CAS  Google Scholar 

  • Schwabe, F., Schulin, R., Limbach, L. K., Stark, W., Bürge, D., & Nowack, B. (2013). Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere, 91(4), 512–520.

    CAS  Google Scholar 

  • Shahbaz, M., Tseng, M. H., Stuiver, C. E. E., Koralewska, A., Posthumus, F. S., Venema, J. H., et al. (2010). Copper exposure interferes with the regulation of the uptake, distribution and metabolism of sulfate in Chinese cabbage. Journal of Plant Physiology, 167(6), 438–446.

    CAS  Google Scholar 

  • Sharma, P. K., & Hall, D. O. (1996). Effect of photoinhibition and temperature on carotenoids in sorghum leaves. Indian Journal of Biochemistry & Biophysics, 33(6), 471–477.

    CAS  Google Scholar 

  • Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24), 9473–9479.

    CAS  Google Scholar 

  • Thounaojam, T. C., Panda, P., Mazumdar, P., Kumar, D., Sharma, G. D., Sahoo, L., & Sanjib, P. (2012). Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiology and Biochemistry, 53, 33–39.

    CAS  Google Scholar 

  • Uversky, V. N., & Fink, A. (Eds.). (2007). Protein misfolding, aggregation and conformational diseases: Part B: Molecular mechanisms of conformational diseases (Vol. 6). Springer Science & Business Media.

  • Vinit-Dunand, F., Epron, D., Alaoui-Sossé, B., & Badot, P. M. (2002). Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Science, 163(1), 53–58.

    CAS  Google Scholar 

  • Walczak, A. P., Fokkink, R., Peters, R., Tromp, P., Herrera, R., Z. E., Rietjens, I, M. C. M., Hendriksen P. J. M., Bouwmeester H. (2012). Behaviour of silver nanoparticles and silver ions in an human gastrointestinal digestion model. Nanotoxicology, 7(7), 1198–1210

  • Wang, S. H., Yang, Z. M., Yang, H., Lu, B., Li, S. Q., & Lu, Y. P. (2004). Copper-induced stress and antioxidative responses in roots of Brassica juncea L. Botanical Bulletin of Academia Sinica, 45, 203–212.

    CAS  Google Scholar 

  • Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J. C., & Xing, B. (2012). Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environmental Science & Technology, 46(8), 4434–4441.

    CAS  Google Scholar 

  • Wells, A. F. (2012). Structural inorganic chemistry. 5th ed., Clarendon Press, Oxford, 1984, p. 1288 (metallic radii for 12-coordination) (ed.) Oxford university press, 2012.

  • Wierzbicka, M., & Obidzińska, J. (1998). The effect of lead on seed imbibition and germination in different plant species. Plant Science, 137, 155–171.

    CAS  Google Scholar 

  • Wu, S. G., Huang, L., Head, J., Chen, D. R., Kong, I. C., & Tang, Y. J. (2012). Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. Journal of Petroleum and Environmental Biotechnology, 3(4), 126.

    CAS  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 402647.

  • Xiao, L., Takada, H., Maeda, K., Haramoto, M., & Miwa, N. (2005). Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomedicine & Pharmacotherapy, 59(7), 351–358.

    CAS  Google Scholar 

  • Yang, L., & Watts, D. J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 158(2), 122–132.

    CAS  Google Scholar 

  • You, J., Zhang, Y., & Hu, Z. (2011). Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 85(2), 161–167.

    CAS  Google Scholar 

  • Younis, M. E., Tourky, S. M. N., & Elsharkawy, S. E. A. (2018). Symptomatic parameters of oxidative stress and antioxidant defense system in Phaseolus vulgaris L. in response to copper or cadmium stress. South African Journal of Botany, 117, 207–214.

    CAS  Google Scholar 

  • Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17(1), 145–156.

    CAS  Google Scholar 

  • Yruela, I. (2009). Copper in plants: acquisition, transport and interactions. Functional Plant Biology, 36(5), 409–430.

    CAS  Google Scholar 

  • Zhang, H., Lian, C., & Shen, Z. (2009). Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa. Annals of Botany, 103(6), 923–930.

    CAS  Google Scholar 

  • Zhang, Z., He, X., Zhang, H., Ma, Y., Zhang, P., Ding, Y., & Zhao, Y. (2011). Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics, 3(8), 816–822.

    Google Scholar 

  • Zhou, D., Jin, S., Li, L., Wang, Y., & Weng, N. (2011). Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions. Journal of Environmental Sciences, 23(11), 1852–1857.

    CAS  Google Scholar 

Download references

Acknowledgements

Maulana Azad National Fellowship (2013–2016) to MVJDC is acknowledged. Sincere thanks to National Institute of Oceanography (NIO), Goa for ICP–OES, SEM and AAS measurements; Physics Department, Goa University for XRD size determination; All India Institute of Medical sciences (AIIMS), New Delhi for TEM imaging.

Contributions

Author MVJ Da Costa (PhD student) has contributed towards CuO NP–related data collection, analysis, interpretation and drafting the manuscript, N Kevat (PhD student) has contributed towards bulk Cu–related data collection and analysis and Prof. PK Sharma (supervisor) has contributed towards conception of the work, critical revision of the manuscript and final approval of the version to be published.

Funding

This work was funded by the Department of Science & Technology (DST), New Delhi (grant number SR/SO/PS–63/2009) and University grants commission–UGC–SAP (Grant number F. 3–50/2009 (SAP–II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhat Kumar Sharma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Costa, M.V.J., Kevat, N. & Sharma, P.K. Copper Oxide Nanoparticle and Copper (II) Ion Exposure in Oryza sativa Reveals Two Different Mechanisms of Toxicity. Water Air Soil Pollut 231, 258 (2020). https://doi.org/10.1007/s11270-020-04592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04592-0

Keywords

Navigation