Advertisement

Water, Air, & Soil Pollution

, 229:368 | Cite as

Reduced Acid Deposition Leads to a New Start for Brown Trout (Salmo trutta) in an Acidified Lake in Southern Norway

  • Espen Lund
  • Øyvind A. Garmo
  • Heleen A. de Wit
  • Torstein Kristensen
  • Kate L. Hawley
  • Richard F. Wright
Article

Abstract

Acid deposition has led to acidification and loss of fish populations in thousands of lakes and streams in Norway. Since the peak in the late 1970s, acid deposition has been greatly reduced and acidified surface waters have shown chemical recovery. Biological recovery, in particular fish populations, however, has lagged behind. Long-term monitoring of water chemistry and fish populations in Lake Langtjern, south-eastern Norway, shows that around 2008, chemical recovery had progressed to the point at which natural reproduction of brown trout (Salmo trutta) reoccurred. The stocked brown trout reproduced in the period 2008–2014, probably for the first time since the 1960s, but reproduction and/or early life stage survival was very low. The results indicate that chemical thresholds for reproduction in this lake are approximately pH = 5.1, Ali = 26 μg l−1, ANC = 47 μeq l−1, and ANCoaa = 10 μeq l−1 as annual mean values. These thresholds agree largely with the few other cases of documented recovery of brown trout in sites in Norway, Sweden, and the UK. Occurrence and duration of acidic episodes have decreased considerably since the 1980s but still occur and probably limit reproduction success.

Keywords

Acidification Acid-neutralizing capacity Fish Recovery 

Notes

Acknowledgements

The long-term data series at Langtjern would not have been possible without the enthusiastic and dogged efforts of our emeritus colleagues Arne Henriksen, Magne Grande, and Sigbjørn Andersen and the local help of Kolbjørn Sønsteby.

Funding

Monitoring of water chemistry in Lake Langtjern is funded by the Norwegian Environment Agency and, since 2013, also by the Ministry of Climate and Environment through a grant supporting continuation of long time series. This work was funded in part by the Norwegian Research Council project “Lakes in Transition” (244558/E50) and the Norwegian Institute for Water Research (NIVA).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Aas, W., Fiebig, M., Platt, S., Solberg, S., and Yttri, K.E. 2016. Monitoring of long-range transported air pollutants in Norway, Annual Report 2015. Miljødirektoratet rapport, M-562/2016, NILU report, 13/2016. Norwegian Institute for Air Research, Kjeller, Norway.Google Scholar
  2. Baker, J. P., & Schofield, C. L. (1982). Aluminum toxicity to fish in acidic waters. Water Air Soil Pollution, 18(1–3), 289–309.CrossRefGoogle Scholar
  3. Baldigo, B. P., Roy, K. M., & Driscoll, C. T. (2016). Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984-2012. Atmospheric Environment, 146, 223–235.CrossRefGoogle Scholar
  4. Bohlin, T., Hamrin, S., Heggberget, T. G., Rasmussen, G., & Saltveit, S. J. (1989). Electrofishing—theory and practice with special emphasis on salmonids. Hydrobiologia, 173, 9–43.CrossRefGoogle Scholar
  5. Bulger, A. J., Lien, L., Cosby, B. J., & Henriksen, A. (1993). Brown trout (Salmo trutta) status and chemistry from the Norwegian thousand lake survey: statistical analysis. Canadian Journal of Fisheries and Aquatic Sciences, 50, 575–585.CrossRefGoogle Scholar
  6. Couture, R. M., Fischer, R., Van Cappellen, P., & Gobeil, C. (2016). Non-steady state diagenesis of organic and inorganic sulfur in lake sediments. Geochimica et Cosmochimica Acta, 194, 15–33.CrossRefGoogle Scholar
  7. Cronan, C. S., Walker, W. J., & Bloom, P. R. (1986). Predicting aqueous aluminium concentrations in natural waters. Nature, 324, 140–143.CrossRefGoogle Scholar
  8. de Wit, H. A., Mulder, J., Hindar, A., & Hole, L. (2007). Long-term increase in dissolved organic carbon in streamwaters in Norway is response to reduced acid deposition. Environmental Science & Technology, 41(22), 7706–7713.CrossRefGoogle Scholar
  9. de Wit, H. A., Hindar, A., & Hole, L. (2008). Winter climate affects long-term trends in stream water nitrate in acid-sensitive catchments in southern Norway. Hydrology and Earth System Sciences, 12(2), 393–403.CrossRefGoogle Scholar
  10. de Wit, H. A., Granhus, A., Lindholm, M., Kainz, M. J., Lin, Y., Braaten, H. F. V., & Blaszczak, J. R. (2014). Forest harvest effects on mercury in streams and biota in Norwegian boreal catchments. Forest Ecology and Management, 324, 52–63.CrossRefGoogle Scholar
  11. de Wit, H. A., Valinia, S., Weyhenmeyer, G. A., Futter, M. N., Kortelainen, P., Austnes, K., Hessen, D. O., Raike, A., Laudon, H., & Vuorenmaa, J. (2016). Current browning of surface waters will be further promoted by wetter climate. Environmental Science & Technology Letters, 3(12), 430–435.CrossRefGoogle Scholar
  12. Driscoll, C. T., Driscoll, K. M., Fakhraei, H., & Civerolo, K. (2016). Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition. Atmospheric Environment, 146, 5–14.CrossRefGoogle Scholar
  13. Futter, M. N., Valinia, S., Lofgren, S., Kohler, S. J., & Folster, J. (2014). Long-term trends in water chemistry of acid-sensitive Swedish lakes show slow recovery from historic acidification. Ambio, 43, 77–90.CrossRefGoogle Scholar
  14. Garmo, O. A., Skjelkvale, B. L., de Wit, H. A., Colombo, L., Curtis, C., Folster, J., Hoffmann, A., Hruska, J., Hogasen, T., Jeffries, D. S., Keller, W. B., Kram, P., Majer, V., Monteith, D. T., Paterson, A. M., Rogora, M., Rzychon, D., Steingruber, S., Stoddard, J. L., Vuorenmaa, J., & Worsztynowicz, A. (2014). Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008. Water, Air, and Soil Pollution, 225(3).Google Scholar
  15. Garmo, Ø., Skancke, L.B., and Høgåsen, T. 2016. Monitoring long-range transboundary air pollution. Water chemical effects 2015. NIVA-rapport 7078, Miljødirektoratet-rapport M-613. Norwegian Institute for Water Research, Oslo.Google Scholar
  16. Grande, M., Muniz, I. P., & Andersen, S. (1978). Relative tolerance of some salmonids to acid waters. Verhandlungen des Internationalen Verein Limnologie, 20, 2076–2084.Google Scholar
  17. Gray, C., Hildrew, A. G., Lu, X., Ma, A., McElroy, D., Monteith, D., O'Gorman, E., Shilland, E., & Woodward, G. (2016). Recovery and nonrecovery of freshwater food webs from the effects of acidification. In A. J. Dumbrell, R. L. Kordas, & G. Woodward (Eds.), Advances in ecological research, vol 55: large-scale ecology: model systems to global perspectives (pp. 475–534). San Diego, CA: Elsevier Academic Press Inc.CrossRefGoogle Scholar
  18. Gunn, J. M., & Keller, W. (1990). Biological recovery of an acid lake after reductions in industrial emissions of Sulphur. Nature, 345(6274), 431–433.CrossRefGoogle Scholar
  19. Henriksen, A., and Grande, M. 2002. Lake Langtjern—fish studies in the Langtjern area 1966-2000. Acid Rain Research Report 54/02 SNO 4537-2002. NIVA, Oslo.Google Scholar
  20. Henriksen, A., & Wright, R. F. (1977). Effects of acid precipitation on a small acid lake in southern Norway. Nordic Hydrology, 8, 1–10.CrossRefGoogle Scholar
  21. Hesthagen, T., Sevaldrud, I. H., & Berger, H. M. (1999). Assessment of damage to fish populations in Norwegian lakes due to acidification. Ambio, 28, 112–117.Google Scholar
  22. Hesthagen, T., Forseth, T., Saksgard, R., Berger, H. M., & Larsen, B. M. (2001). Recovery of young brown trout in some acidified streams in southwestern and western Norway. Water, Air, and Soil Pollution, 130(1–4), 1355–1360.CrossRefGoogle Scholar
  23. Hesthagen, T., Fiske, P., & Skjelkvale, B. L. (2008). Critical limits for acid neutralizing capacity of brown trout (Salmo trutta) in Norwegian lakes differing in organic carbon concentrations. Aquatic Ecology, 42(2), 307–316.CrossRefGoogle Scholar
  24. Hesthagen, T., Fjellheim, A., Schartau, A. K., Wright, R. F., Saksgård, R., & Rosseland, B. O. (2011). Chemical and biological recovery of Lake Saudlandsvatn, a highly acidified lake in southernmost Norway, in response to decreased acid deposition. Science of the Total Environment, 409, 2908–2916.CrossRefGoogle Scholar
  25. Hesthagen, T., Fiske, P., & Saksgard, R. (2016). Recovery of young brown trout (Salmo trutta) in acidified streams: What are the critical values for acid-neutralizing capacity? Atmospheric Environment, 146, 236–244.CrossRefGoogle Scholar
  26. Hodson, M. E., & Langan, S. J. (1999). Considerations of uncertainty in setting critical loads of acidity of soils: The role of weathering rate determination. Environmental Pollution, 106(1), 73–81.CrossRefGoogle Scholar
  27. Holmgren, K. (2014). Challenges in assessing biological recovery from acidification in Swedish lakes. Ambio, 43, 19–29.CrossRefGoogle Scholar
  28. Jeffries, D. S., Clair, T. A., Couture, S., Dillon, P. J., Dupont, J., Keller, W., McNicol, D. K., Turner, M. A., Vet, R., & Weeber, R. (2003). Assessing the recovery of lakes in southeastern Canada from the effects of acid deposition. Ambio, 32, 176–182.CrossRefGoogle Scholar
  29. Lacoul, P., Freedman, B., & Clair, T. (2011). Effects of acidification on aquatic biota in Atlantic Canada. Environmental Reviews, 19, 429–460.CrossRefGoogle Scholar
  30. Lien, L., Raddum, G. G., Fjellheim, A., & Henriksen, A. (1996). A critical limit for acid neutralizing capacity in Norwegian surface waters, based on new analyses of fish and invertebrate responses. Science of the Total Environment, 177, 173–193.CrossRefGoogle Scholar
  31. Lydersen, E., Larssen, T., & Fjeld, E. (2004). The influence of total organic carbon (TOC) on the relationship between acid neutralizing capacity (ANC) and fish status in Norwegian lakes. Science of the Total Environment, 362, 63–69.CrossRefGoogle Scholar
  32. Malcolm, I. A., Bacon, P. J., Middlemas, S. J., Fryer, R. J., Shilland, E. M., & Collen, P. (2014). Relationships between hydrochemistry and the presence of juvenile brown trout (Salmo trutta) in headwater streams recovering from acidification. Ecological Indicators, 37, 351–364.CrossRefGoogle Scholar
  33. Monteith, D. T., Evans, C. D., Henrys, P. A., Simpson, G. L., & Malcolm, I. A. (2014). Trends in the hydrochemistry of acid-sensitive surface waters in the UK 1988-2008. Ecological Indicators, 37, 287–303.CrossRefGoogle Scholar
  34. Overrein, L., Seip, H.M., and Tollan, A. 1980. Acid precipitation—effects on forest and fish. Final report of the SNSF-project 1972–1980. FR 19-80. SNSF project, Ås, Norway.Google Scholar
  35. Rask, M., Vuorenmaa, J., Nyberg, K., Tammi, J., Mannio, J., Olin, M., Kortelainen, P., Raitaniemi, J., & Vesala, S. (2014). Recovery of acidified lakes in Finland and subsequent responses of perch and roach populations. Boreal Environment Research, 19(3), 222–234.Google Scholar
  36. Reuss, J. O., & Johnson, D. W. (1986). Acid deposition and the acidification of soils and waters. New York: Springer Verlag.CrossRefGoogle Scholar
  37. Reuss, J. O., Cosby, B. J., & Wright, R. F. (1987). Chemical processes governing soil and water acidification. Nature, 329, 27–32.CrossRefGoogle Scholar
  38. Reuss, J. O., Walthall, P. M., Roswall, E. C., & Hopper, R. W. E. (1990). Aluminum solubility, calcium-aluminum exchange, and pH in acid forest soils. Soil Science Society of America Journal, 54, 374–380.CrossRefGoogle Scholar
  39. Rosseland, B. O., Eldhuset, T. D., & Staurnes, M. (1990). Environmental-effects of aluminum. Environmental Geochemistry and Health, 12(1–2), 17–27.CrossRefGoogle Scholar
  40. Schöpp, W., Posch, M., Mylona, S., & Johansson, M. (2003). Long-term development of acid deposition (1880-2030) in sensitive freshwater regions in Europe. Hydrology and Earth System Sciences, 7, 436–446.CrossRefGoogle Scholar
  41. Serrano, I., Buffam, I., Palm, D., Brannas, E., & Laudon, H. (2008). Thresholds for survival of brown trout during the spring flood acid pulse in streams high in dissolved organic carbon. Transactions of the American Fisheries Society, 137, 1363–1377.CrossRefGoogle Scholar
  42. Skjelkvåle, B. L., Wright, R. F., & Henriksen, A. (1998). Norwegian lakes show widespread recovery from acidification: results of national surveys of lakewater chemistry 1986-1997. Hydrology and Earth System Sciences, 2, 555–562.CrossRefGoogle Scholar
  43. Skjelkvåle, B. L., Borg, H., Hindar, A., & Wilander, A. (2007). Large scale patterns of chemical recovery in lakes in Norway and Sweden: importance of seasalt episodes and changes in dissolved organic carbon. Applied Geochemistry, 22(6), 1174–1180.CrossRefGoogle Scholar
  44. Snucins, E., Gunn, J., Keller, B., Dixit, S., Hindar, A., & Henriksen, A. (2001). Effects of regional reductions in sulphur deposition on the chemical and biological recovery of lakes within Killarney Park, Ontario, Canada. Environmental Monitoring and Assessment, 67(1–2), 179–194.CrossRefGoogle Scholar
  45. Stoddard, J. L., Jeffries, D. S., Lükewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T., Forsius, M., Johannessen, M., Kahl, J. S., Kellogg, J. H., Kemp, A., Mannio, J., Monteith, D., Murdoch, P. S., Patrick, S., Rebsdorf, A., Skjelkvåle, B. L., Stainton, M. P., Traaen, T. S., van Dam, H., Webster, K. E., Wieting, J., & Wilander, A. (1999). Regional trends in aquatic recovery from acidification in North America and Europe 1980-95. Nature, 401, 575–578.CrossRefGoogle Scholar
  46. UNECE. 2014. Convention on long-range transboundary air pollution. http://www.unece.org/env/lrtap/lrtap_h1.html
  47. Valinia, S., Englund, G., Moldan, F., Futter, M. N., Kohler, S. J., Bishop, K., & Folster, J. (2014). Assessing anthropogenic impact on boreal lakes with historical fish species distribution data and hydrogeochemical modeling. Global Change Biology, 20(9), 2752–2764.CrossRefGoogle Scholar
  48. Wright, R. F., & Henriksen, A. (1978). Chemistry of small Norwegian lakes with special reference to acid precipitation. Limnology and Oceanography, 23, 487–498.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Norwegian Institute for Water Research (NIVA)OsloNorway
  2. 2.Faculty of Biosciences and AquacultureNord UniversityBodøNorway
  3. 3.Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway

Personalised recommendations