Skip to main content
Log in

Use of Sesquiterpanes, Steranes, and Terpanes for Forensic Fingerprinting of Chemically Dispersed Oil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biomarkers, as complex hydrocarbons in oil from formally living organisms, have been widely used for offshore oil spill fingerprinting. The application of oil dispersants may affect the suitability of existing biomarkers in oil fingerprinting during physicochemical weathering. The existence and concentrations of some biomarkers in chemically dispersed oil (CDO) may differ from those in crude oil and weathered oil. Such differences could affect the diagnostic ratios among different biomarkers and cause difficulties in oil spill fingerprinting. This study thus examined the stability and suitability of three groups of biomarkers, i.e., sesquiterpanes, steranes, and terpanes, for CDO characterization in seawater after application of a representative chemical dispersant (Corexit 9500A). The results indicated that the suitability of sesquiterpanes as biomarkers for CDO identification was affected due to less number of stable diagnostic ratios and overlapped ranges of diagnostic ratios compared to other reference oils. On the contrary, most of the steranes and terpanes could still be applied as biomarkers for CDO characterization. All the selected diagnostic ratios of terpanes were suitable for identification of oil sources. By considering both the stability and suitability, the recommended ranking of biomarkers for CDO was terpanes > steranes > sesquiterpanes. The findings would help improve offshore oil spill fingerprinting methods particularly after application of chemical dispersants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aeppli, C., Carmichael, C. A., Nelson, R. K., Lemkau, K. L., Graham, W. M., Redmond, M. C., et al. (2012). Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environmental Science & Technology, 46(16), 8799–8807.

    Article  CAS  Google Scholar 

  • Anderson, J. W., Neff, J. M., Cox, B. A., Tatem, H. E., & Hightowe, G. (1974). Characteristics of dispersions and water-soluble extracts of crude and refined oils and their toxicity to estuarine crustaceans and fish. Marine Biology, 27(1), 75–88. doi:10.1007/Bf00394763.

    Article  CAS  Google Scholar 

  • Arey, J. S., Nelson, R. K., Xu, L., & Reddy, C. M. (2005). Using comprehensive two-dimensional gas chromatography retention indices to estimate environmental partitioning properties for a complete set of diesel fuel hydrocarbons. Analytical Chemistry, 77(22), 7172–7182.

    Article  CAS  Google Scholar 

  • Bayona, J. M., Domínguez, C., & Albaigés, J. (2015). Analytical developments for oil spill fingerprinting. Trends in Environmental Analytical Chemistry, 5, 26–34.

    Article  CAS  Google Scholar 

  • Bost, F., Frontera-Suau, R., McDonald, T., Peters, K., & Morris, P. (2001). Aerobic biodegradation of hopanes and norhopanes in Venezuelan crude oils. Organic Geochemistry, 32(1), 105–114.

    Article  CAS  Google Scholar 

  • Brakstad, O. G., Nordtug, T., & Throne-Holst, M. (2015). Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes. Marine Pollution Bulletin, 93(1), 144–152.

    Article  CAS  Google Scholar 

  • Chandru, K., Zakaria, M. P., Anita, S., Shahbazi, A., Sakari, M., Bahry, P. S., et al. (2008). Characterization of alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) in tar-balls collected from the East Coast of Peninsular Malaysia. Marine Pollution Bulletin, 56(5), 950–962.

    Article  CAS  Google Scholar 

  • Conmy, R. N., Coble, P. G., Farr, J., Wood, A. M., Lee, K., Pegau, W. S., et al. (2014). Submersible optical sensors exposed to chemically dispersed crude oil: wave tank simulations for improved oil spill monitoring. Environmental Science & Technology, 48(3), 1803–1810.

    Article  CAS  Google Scholar 

  • Couillard, C. M., Lee, K., Legare, B., & King, T. L. (2005). Effect of dispersant on the composition of the water-accommodated fraction of crude oil and its toxicity to larval marine fish. Environmental Toxicology and Chemistry, 24(6), 1496–1504. doi:10.1897/04-267r.1.

    Article  CAS  Google Scholar 

  • Daling, P. S., Faksness, L.-G., Hansen, A. B., & Stout, S. A. (2002). Improved and standardized methodology for oil spill fingerprinting. Environmental Forensics, 3(3-4), 263–278.

    Article  CAS  Google Scholar 

  • Daling, P. S., Leirvik, F., Almås, I. K., Brandvik, P. J., Hansen, B. H., Lewis, A., et al. (2014). Surface weathering and dispersibility of MC252 crude oil. Marine Pollution Bulletin, 87(1), 300–310.

    Article  CAS  Google Scholar 

  • Dargay, J. M., & Gately, D. (2010). World oil demand’s shift toward faster growing and less price-responsive products and regions. Energy Policy, 38(10), 6261–6277. doi:10.1016/j.enpol.2010.06.014.

    Article  Google Scholar 

  • Ehrhardt, M., & Blumer, M. (1972). The source identification of marine hydrocarbons by gas chromatography. Environmental Pollution (1970), 3(3), 179–194.

    Article  CAS  Google Scholar 

  • Gong, Y., Zhao, X., Cai, Z., O’Reilly, S. E., Hao, X., & Zhao, D. (2014). A review of oil, dispersed oil and sediment interactions in the aquatic environment: influence on the fate, transport and remediation of oil spills. Marine Pollution Bulletin, 79(1-2), 16–33. doi:10.1016/j.marpolbul.2013.12.024.

    Article  CAS  Google Scholar 

  • Harvey, S. D., Jarman, K. H., Moran, J. J., Sorensen, C. M., & Wright, B. W. (2012). Characterization of diesel fuel by chemical separation combined with capillary gas chromatography (GC) isotope ratio mass spectrometry (IRMS). Talanta, 99, 262–269.

    Article  CAS  Google Scholar 

  • Hasinger, M., Scherr, K. E., Lundaa, T., Bräuer, L., Zach, C., & Loibner, A. P. (2012). Changes in iso-and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions. Journal of Biotechnology, 157(4), 490–498.

    Article  CAS  Google Scholar 

  • Hostettler, F. D., Wang, Y., Huang, Y., Cao, W., Bekins, B. A., Rostad, C. E., et al. (2007). Forensic fingerprinting of oil-spill hydrocarbons in a methanogenic environment–Mandan, ND and Bemidji, MN. Environmental Forensics, 8(1-2), 139–153.

    Article  CAS  Google Scholar 

  • Joo, C., Shim, W. J., Kim, G. B., Ha, S. Y., Kim, M., An, J. G., et al. (2013). Mesocosm study on weathering characteristics of Iranian Heavy crude oil with and without dispersants. Journal of Hazardous Materials, 248, 37–46.

    Article  Google Scholar 

  • Macnaughton, S. J., Swannell, R., Daniel, F., & Bristow, L. (2003). Biodegradation of dispersed Forties crude and Alaskan North Slope oils in microcosms under simulated marine conditions. Spill Science & Technology Bulletin, 8(2), 179–186.

    Article  CAS  Google Scholar 

  • Mohialdeen, I. M., Hakimi, M. H., & Al-Beyati, F. M. (2013). Biomarker characteristics of certain crude oils and the oil-source rock correlation for the Kurdistan oilfields, Northern Iraq. Arabian Journal of Geosciences, 8(1), 507–523.

    Article  Google Scholar 

  • Mulabagal, V., Yin, F., John, G., Hayworth, J., & Clement, T. (2013). Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shoreline. Marine Pollution Bulletin, 70(1), 147–154.

    Article  CAS  Google Scholar 

  • National Research Council. (2003). Oil in the sea III: Inputs, Fates, and Effect. Washington DC: National Research Council.

    Google Scholar 

  • Prince, R. C., Garrett, R. M., Bare, R. E., Grossman, M. J., Townsend, T., Suflita, J. M., et al. (2003). The roles of photooxidation and biodegradation in long-term weathering of crude and heavy fuel oils. Spill Science & Technology Bulletin, 8(2), 145–156.

    Article  CAS  Google Scholar 

  • Prince, R. C., McFarlin, K. M., Butler, J. D., Febbo, E. J., Wang, F. C., & Nedwed, T. J. (2013). The primary biodegradation of dispersed crude oil in the sea. Chemosphere, 90(2), 521–526.

    Article  CAS  Google Scholar 

  • Radović, J. R., Aeppli, C., Nelson, R. K., Jimenez, N., Reddy, C. M., Bayona, J. M., et al. (2014). Assessment of photochemical processes in marine oil spill fingerprinting. Marine Pollution Bulletin, 79(1), 268–277.

    Article  Google Scholar 

  • Salanitro, J. P., Dorn, P. B., Huesemann, M. H., Moore, K. O., Rhodes, I. A., Jackson, L. M. R., et al. (1997). Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environmental Science & Technology, 31(6), 1769–1776. doi:10.1021/Es960793i.

    Article  CAS  Google Scholar 

  • Stout, S. A., Uhler, A. D., & McCarthy, K. J. (2005). Middle distillate fuel fingerprinting using drimane-based bicyclic sesquiterpanes. Environmental Forensics, 6(3), 241–251.

    Article  CAS  Google Scholar 

  • Swannell, R. P., & Daniel, F. (1999). Effect of dispersants on oil biodegradation under simulated marine conditions. In International Oil Spill Conference, (Vol. 1999, pp. 169-176, Vol. 1): American Petroleum Institute.

  • Tsutsumi, H., Hirota, Y., & Hirashima, A. (2000). Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan. II. Toxicity of a bioremediation agent with microbiological cultures in aquatic organisms. [Article]. Marine Pollution Bulletin, 40(4), 315–319. doi:10.1016/s0025-326x(99)00219-2.

    Article  CAS  Google Scholar 

  • United States Coast Guard (2011). On Scene Coordinator Report Deep Water Horizon Oil Spill, Submitted to National Response Team.

  • Wang, C., Chen, B., Zhang, B., He, S., & Zhao, M. (2013a). Fingerprint and weathering characteristics of crude oils after Dalian oil spill, China. Marine Pollution Bulletin, 71(1), 64–68.

    Article  CAS  Google Scholar 

  • Wang, C., Hu, X., He, S., Liu, X., & Zhao, M. (2013b). Source diagnostic and weathering indicators of oil spills utilizing bicyclic sesquiterpanes. Acta Oceanologica Sinica, 32(8), 79–84.

    Article  Google Scholar 

  • Wang, Z., & Fingas, M. (1997). Developments in the analysis of petroleum hydrocarbons in oils, petroleum products and oil-spill-related environmental samples by gas chromatography. Journal of Chromatography A, 774(1), 51–78.

    Article  CAS  Google Scholar 

  • Wang, Z., Fingas, M., Blenkinsopp, S., Sergy, G., Landriault, M., Sigouin, L., et al. (1998). Comparison of oil composition changes due to biodegradation and physical weathering in different oils. Journal of Chromatography A, 809(1), 89–107.

    Article  CAS  Google Scholar 

  • Wang, Z., Fingas, M., Lambert, P., Zeng, G., Yang, C., & Hollebone, B. (2004). Characterization and identification of the Detroit River mystery oil spill (2002). Journal of Chromatography A, 1038(1), 201–214.

    Article  CAS  Google Scholar 

  • Wang, Z., Fingas, M., & Sigouin, L. (2000). Characterization and source identification of an unknown spilled oil using fingerprinting techniques by GC-MS and GC-FID.

  • Wang, Z., Fingas, M., & Sigouin, L. (2001). Characterization and identification of a “mystery” oil spill from Quebec (1999). Journal of Chromatography A, 909(2), 155–169.

    Article  CAS  Google Scholar 

  • Wang, Z., Hollebone, B., Fingas, M., Fieldhouse, B., Sigouin, L., Landriault, M., et al. (2003). Characteristics of spilled oils, fuels, and petroleum products: 1. Composition and properties of selected oils. United States Enviromental Protection Agency.

  • Wang, Z., Stout, S. A., & Fingas, M. (2006a). Forensic fingerprinting of biomarkers for oil spill characterization and source identification. Environmental Forensics, 7(2), 105–146.

    Article  CAS  Google Scholar 

  • Wang, Z., Yang, C., Fingas, M., Hollebone, B., Peng, X., Hansen, A. B., et al. (2005). Characterization, weathering, and application of sesquiterpanes to source identification of spilled lighter petroleum products. Environmental Science & Technology, 39(22), 8700–8707.

    Article  CAS  Google Scholar 

  • Wang, Z., Yang, C., Hollebone, B., & Fingas, M. (2006b). Forensic fingerprinting of diamondoids for correlation and differentiation of spilled oil and petroleum products. Environmental Science & Technology, 40(18), 5636–5646.

    Article  CAS  Google Scholar 

  • Wang, Z. D., & Fingas, M. F. (2003). Development of oil hydrocarbon fingerprinting and identification techniques. [Article; Proceedings Paper]. Marine Pollution Bulletin, 47(9-12), 423–452. doi:10.1016/s0025-326x(03)00215-7.

    Article  CAS  Google Scholar 

  • Williams, J., Bjorøy, M., Dolcater, D., & Winters, J. (1986). Biodegradation in South Texas Eocene oils—effects on aromatics and biomarkers. Organic Geochemistry, 10(1), 451–461.

    Article  CAS  Google Scholar 

  • Yang, C., Wang, Z., Hollebone, B., Brown, C., Landriault, M., Fieldhouse, B., et al. (2012). Application of light petroleum biomarkers for forensic characterization and source identification of spilled light refined oils. Environmental Forensics, 13(4), 298–311.

    Article  CAS  Google Scholar 

  • Yang, C., Wang, Z., Hollebone, B. P., Brown, C. E., & Landriault, M. (2009). Characteristics of bicyclic sesquiterpanes in crude oils and petroleum products. Journal of Chromatography A, 1216(20), 4475–4484.

    Article  CAS  Google Scholar 

  • Yang, C., Wang, Z., Liu, Y., Yang, Z., Li, Y., Shah, K., et al. (2013). Aromatic steroids in crude oils and petroleum products and their applications in forensic oil spill identification. Environmental Forensics, 14(4), 278–293.

    Article  CAS  Google Scholar 

  • Yang, C., Wang, Z., Yang, Z., Hollebone, B., Brown, C. E., Landriault, M., et al. (2011). Chemical fingerprints of Alberta oil sands and related petroleum products. Environmental Forensics, 12(2), 173–188.

    Article  CAS  Google Scholar 

  • Yim, U. H., Kim, M., Ha, S. Y., Kim, S., & Shim, W. J. (2012). Oil spill environmental forensics: the Hebei Spirit oil spill case. Environmental Science & Technology, 46(12), 6431–6437. doi:10.1021/es3004156.

    Article  CAS  Google Scholar 

  • Zhuang, M., Abulikemu, G., Campo, P., Platten, W. E., Suidan, M. T., Venosa, A. D., et al. (2016). Effect of dispersants on the biodegradation of South Louisiana crude oil at 5 and 25° C. Chemosphere, 144, 767–774.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express the gratitude to the Petroleum Research Newfoundland and Labrador (PRNL), Research & Development Corporation (RDC) of Newfoundland and Labrador, Natural Sciences and Engineering Research Council of Canada (NSERC), and Canada Foundation for Innovation (CFI) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Zhang, B., Chen, B. et al. Use of Sesquiterpanes, Steranes, and Terpanes for Forensic Fingerprinting of Chemically Dispersed Oil. Water Air Soil Pollut 227, 281 (2016). https://doi.org/10.1007/s11270-016-2981-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2981-1

Keywords

Navigation