Skip to main content

Advertisement

Log in

Litter decomposition of woody species in shrublands of NW Patagonia: how much do functional groups and microsite conditions influence decomposition?

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The study examined the effects of leaf traits, soil microsite, and microclimate characteristics on litter decomposition of the dominant species in two functional groups (FG), deciduous and evergreen, in shrublands in NW Patagonia, Argentina. Leaf traits considered were nutrient concentration (C, N, P, C/N, and N/P) and physical characteristics (area, strength, specific leaf area, and dry matter content). Soil microsite characteristics measured were pH, C, N, P, C/N and water retention capacity, while soil microclimate characteristics recorded were soil and air, temperature and moisture, and solar radiation. Five evergreen and five deciduous woody shrub species were selected. During 1 year, litter and microsite properties were measured below canopy: (i) senescent leaf chemical and physical properties, and the quantity as well as field decomposition of litter and (ii) soil chemistry, and soil and air physical properties. The factors controlling litter decomposition were different for each FG. In deciduous species, C/N ratio had a negative effect on decomposition. In evergreen species, decomposition was affected negatively by leaf carbon and dry matter content. Litter decomposition depended exclusively on the inherent senescent leaves traits. The common decomposition pattern between species of both FG could be attributed to similar leaf traits and the correlation between variables that control decomposition in both groups. Plant nutrient inputs associated with the litter decomposition process did not explain the soil nutrient content. These results suggest that other organic matter sources (roots, branches, and fruits) are more important than leaves on soil fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns—VI. Nutrient storage-B. Variation among growth-forms. Adv Ecol Res 30:19–19

    Google Scholar 

  • Alauzis MV, Mazzarino MJ, Raffaele E, Roselli L (2004) Wildfires in NW Patagonia: long-term effects on a Nothofagus forest soil. For Ecol Manag 192:131–142

    Article  Google Scholar 

  • Augusto L, De Schrijver A, Vesterdal L, Smolander A, Prescott C, Ranger J (2015) Influences of evergreens gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol Rev 90:444–466

    Article  PubMed  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558

    Article  CAS  PubMed  Google Scholar 

  • Backhouse N, Delporte C, Negrete R, San Feliciano SA, López-Pérez JL (2002) Bioactive phenolic derivatives from Acaena splendens methanol extract. Phytother Res 16:562–566

    Article  CAS  PubMed  Google Scholar 

  • Barrera M, Frangi JL, Ferrando JJ, Goya JF (2004) Descomposición del mantillo y liberación foliar neta de nutrientes de Austrocedrus chilensis (D. Don) Pic. Serm. Et Bizzarri en El Bolsón, Río Negro. Ecol Austral 14:99–112

    Google Scholar 

  • Berg B, Johansson MB, Ekbohm G, Mc Claugherty C, Rutigliano F, Santo AVD (1996) Maximum decomposition limits of forest litter types: a synthesis. Can J Bot 74:659–672

    Article  Google Scholar 

  • Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Riahi K (2008) IPCC, 2007: Climate Change 2007. Synthesis Report

  • Bertiller MB, Mazzarino MJ, Carrera AL, Diehl P, Satti P, Gobbi M, Sain CL (2006) Leaf strategies and soil N across a regional humidity gradient in Patagonia. Oecologia 148:612–624

    Article  PubMed  Google Scholar 

  • Bocock KL, Gilbert O, Capstick CK, Twinn DC, Waid JS, Woodman MJ (1960) Changes in leaf litter when placed on the surface of soils with contrasting humus types. J Soil Sci 11:1–9

    Article  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi model inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Cebrian J (1999) Patterns in the fate of production in plant communities. Am Nat 154:449–468

    Article  CAS  PubMed  Google Scholar 

  • Chae HM, Cha S, Lee SH, Choi MJ, Shim JK (2015) Age-related decomposition of Quercus mongolica branches. Plant Ecol 217(8):945–957

    Article  Google Scholar 

  • Cornelissen JHC, Van Bodegom PM, Aerts R, Callaghan TV, Van Logtestijn RSP, Alatalo J, Stuart Chapin F, Gerdol R, Gudmundsson J, Gwynn-Jones D et al (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627

    Article  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Coûteaux MM, Hervé D, Beck S (2006) Descomposición de hojarasca y raíces en un sistema de descanso largo (Altiplano de Bolivia). Ecología en Bolivia 41:85–102

    Google Scholar 

  • Damascos MA, Arribere M, Svriz M, Bran D (2008) Fruit mineral contents of six wild species of the North Andean Patagonia, Argentina. Biol Trace Element Res 125(1):72–80

  • De Marco J, Mack MC, Bret-Harte MS (2014) Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95:1861–1875

    Article  Google Scholar 

  • de Paz M (2014) Heterogeneidad de micrositio, dinámica de nutrientes y facilitación en especies leñosas de los matorrales del NO de la Patagonia. Doctoral Thesis. Universidad Nacional del Comahue. Advisors: Dra Estela Raffaele (CONICET) and Miriam Gobbi (CRUB, UNCo)

  • de Paz M, Gobbi ME, Raffaele E (2013) Mantillo de las especies leñosas de matorrales del NO de la Patagonia: abundancia, composición, estructura y heterogeneidad. Boletín de la Sociedad Argentina de Botánica 48:525–541

    Google Scholar 

  • Dean WRJ, Milton SJ, Jeltsch F (1999) Large trees, fertile islands, and birds in arid savanna. J Arid Environ 41:61–78

    Article  Google Scholar 

  • Díaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–474

    Article  Google Scholar 

  • Diehl P, Mazzarino MJ, Funes F, Fontenla S, Gobbi ME, Ferrari J (2003) Nutrient conservation strategies in native Andean-Patagonian forests. J Veg Sci 14:63–70

    Article  Google Scholar 

  • Ekblad A, Nordgren A (2002) Is growth of soil microorganisms in boreal forests limited by carbon or nitrogen availability? Plant Soil 242:115–122

    Article  CAS  Google Scholar 

  • Facelli JM, Williams R, Fricker S, Ladd B (1999) Establishment and growth of seedlings of Eucalyptus obliqua: interactive effects of litter, water, and pathogens. Aust J Ecol 24:484–494

    Article  Google Scholar 

  • Fioretto A, Papa S, Fuggi A (2003) Litter-fall and litter decomposition in a low Mediterranean shrubland. Biol Fertil Soils 39:37–44

    Article  CAS  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JHC (2012) A plant economics spectrum of litter decomposability. Funct Ecol 26:56–65

    Article  Google Scholar 

  • Gelman A (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, New York

    Google Scholar 

  • Gutiérrez JR, Squeo FA (2004) Importancia de los arbustos en los ecosistemas semiáridos de Chile. Ecosistemas 13:36–45

    Google Scholar 

  • Hamer U, Marschner B (2005) Priming effects in soils after combined and repeated substrate additions. Geoderma 128:38–51

    Article  CAS  Google Scholar 

  • Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–363

    Article  PubMed  Google Scholar 

  • Keith DA, Holman L, Rodoreda S, Lemmon J, Bedward M (2007) Plant functional types can predict decade-scale changes in fire-prone vegetation. J of Ecol 95:1324–1337

    Article  Google Scholar 

  • Knops JMH, Bradley KL, Wedin DA (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454–466

    Article  Google Scholar 

  • Lavelle P, Blanchart E, Martin A, Martin S, Spain A (1993) A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25:130–150

    Article  Google Scholar 

  • Lu J, Turkington R, Zhou Z (2013) The effects of litter quantity and quality on soil nutrients and litter invertebrates in the understory of two forests in southern China. Plant Ecol 217(11):1415–1428

    Article  Google Scholar 

  • Martínez-Yrízar A, Núñez S, Búrquez A (2007) Leaf litter decomposition in a southern Sonoran Desert ecosystem, northwestern Mexico: effects of habitat and litter quality. Acta Oecol 32:291–300

    Article  Google Scholar 

  • Mataix Solera J (2000) Alteraciones físicas, químicas y biológicas en suelos afectados por incendios forestales: contribución a su conservación y regeneración. Tesis Doctoral Departamento de Agroquímica y Bioquímica. Universidad de Alicante, Alicante

  • Mazzarino MJ, Bertiller MB, Schlichter TM, Gobbi ME (1998) Nutrient cycling in Patagonian ecosystems. Ecol Austral 8:167–181

    Google Scholar 

  • Ohm H, Hamer U, Marschner B (2007) Priming effects in soil size fractions of a podzol Bs horizon after addition of fructose and alanine. J Plant Nutr Soil Sci 170:551–559

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular 939. USDA, Washington, DC

  • Page AL (1982) Methods of soil analysis: chemical and microbiological properties. Amen Society of Agronomy

  • Pearse IS, Cobb RC, Karban R (2013) The phenology substrate match hypothesis explains decomposition rates of evergreens and deciduous oak leaves. J Ecol 102:28–35

    Article  Google Scholar 

  • Pérez C, Armesto JJ, Ruthsatz B (1991) Descomposición de hojas, biomasa de raíces y características de los suelos en bosques mixtos de coníferas y especies laurifolias en el Parque Nacional Chiloé, Chile. Rev Chil Hist Nat 64:479–490

    Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Cornelissen J, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30

    Article  Google Scholar 

  • Pérez Harguindeguy N, Blundo CM, Gurvich DE, Díaz S, Cuevas E (2008) More than the sum of its parts? Assessing litter heterogeneity effects on the decomposition of litter mixtures through leaf chemistry. Plant Soil 303:151–159

  • Peri PL, Gargaglione V, Martínez Pastur G, Lencinas MV (2010) Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. For Ecol Manag 260:229–237

    Article  Google Scholar 

  • Pinheiro J, Bates D, Deb Roy S, Sarkar D (2007) Linear and nonlinear mixed effects models. R package version 3, 57

  • Prescott CE (2005) Do rates of litter decomposition tell us anything we really need to know? For Ecol Manag 220:66–74

    Article  Google Scholar 

  • Raffaele E, Veblen TT (1998) Facilitation by nurse shrubs of resprouting behaviour in a post-fire shrubland in northern Patagonia, Argentina. J Veg Sci 9:1–6

    Article  Google Scholar 

  • Rathore M (2009) Nutrient content of important fruit trees from arid zone of Rajasthan. J Hortic For 1:103–108

    Google Scholar 

  • Richardson JB, Friedland AJ (2016) Influence of coniferous and deciduous vegetation on major and trace metals in forests of northern New England, USA. Plant Soil 402:363–378

    Article  CAS  Google Scholar 

  • Santos PF, Elkins NZ, Steinberger Y, Whitford WG (1984) A comparison of surface and buried Larrea tridentata leaf litter decomposition in North American hot deserts. Ecology 65:278–284

    Article  Google Scholar 

  • Satti P, Mazzarino MJ, Roselli L, Crego P (2007) Factors affecting soil P dynamics in temperate volcanic soils of southern Argentina. Geoderma 139:229–240

    Article  CAS  Google Scholar 

  • Schlesinger WH, Hasey MM (1981) Decomposition of chaparral shrub foliage: losses of organic and inorganic constituents from deciduous and evergreens leaves. Ecology 62:762–774

    Article  CAS  Google Scholar 

  • Steubing L, Godoy R, Alberdi M (2001) Métodos de ecología vegetal. Editorial Universitaria S.A, Santiago de Chile

    Google Scholar 

  • Suberkropp K, Godshalk GL, Klug MJ (1976) Changes in the chemical composition of leaves during processing in a woodland stream. Ecology 57:720–727

    Article  CAS  Google Scholar 

  • Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J Assoc Off Agric Chem 46:829–835

    Google Scholar 

  • Vivanco L (2008) Efectos de la identidad y diversidad de especies de plantas sobre el reciclado de carbono y nutrientes en bosques templados en Patagonia, Argentina. Tesis Doctoral, UBA, Buenos Aires

  • Ward SE, Orwin KH, Ostle NJ, Briones MJI, Thomson BC, Griffiths RI, Oakley S, Quirk H, Bardgett RD (2015) Vegetation exerts a greater control on litter decomposition than climate warming in peatlands. Ecology 96:113–123

    Article  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD (2004) Human-induced changes in large herbivorous mammal density: the consequences for decomposers. Front Ecol Environ 2:145–153

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Yavitt JB, Williams CJ (2015) Linking tree species identity to anaerobic microbial activity in a forested wetland soil via leaf litter decomposition and leaf carbon fractions. Plant Soil 390:293–305

    Article  CAS  Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Acknowledgements

This study was funded by Universidad Nacional del Comahue (B103), MINCyT (PROEVO 40-B-189), CONICET (PIP-5066), MAGyP (PIA10118), and YPF (4x4 Ford Ranger donation).Thanks to M. Carruitero, L. Aput, and C.Tur for field assistance. Thanks to Drs. Analía Lorena Carrera, Joseph Donnegan, and Juan Cabrera for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel de Paz.

Additional information

Communicated by Jason B. West.

Nomenclature: Instituto de botánica Darwinion data base (http://www.floraargentina.edu.ar/).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paz, M., Gobbi, M.E., Raffaele, E. et al. Litter decomposition of woody species in shrublands of NW Patagonia: how much do functional groups and microsite conditions influence decomposition?. Plant Ecol 218, 699–710 (2017). https://doi.org/10.1007/s11258-017-0722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-017-0722-1

Keywords

Navigation