Topics in Catalysis

, Volume 54, Issue 10–12, pp 698–707 | Cite as

From Materials Science to Catalysis: Influence of the Coating of 2D- and 3D-Inserts on the Catalytic Behaviour of VOx/TiO2 in Oxidative Dehydrogenation of Propane

  • A. Essakhi
  • A. Löfberg
  • S. Paul
  • P. Supiot
  • B. Mutel
  • V. Le Courtois
  • E. Bordes-Richard
Original Paper

Abstract

The chemistry of the coating of stainless steel plates and foams with VOx/TiO2 catalyst to be utilised in the oxidative dehydrogenation of propane is described. A primer layer of SiO2 was first deposited by RPECVD, to anchor the active phase, to accommodate the difference of dilatation coefficient with steel and to act as a barrier against diffusion of poisonous steel elements. The coated VOx/TiO2 foams were inserted in a tube that could also be loaded with VOx/TiO2 powders to compare their catalytic performance. Preliminary results showed that the selectivity to propene was higher by 10% on silica-protected (ca. 5 μm thick) VOx/TiO2 foam than in the absence of silica, and higher by more than 20% than VOx/TiO2 powders at any conversion. The better performance was attributed to enhanced heat and mass transfers due to turbulent flow regime and to the high conduction of metallic foam. Hot spots which generate over-oxidation of propene were avoided. The choice of the substrate material, of which depend the mechanical and chemical properties of the active phase coating, and of the reactor configurations vs. the efficiency of heat and mass transfers was also commented.

Keywords

Catalytic foam Coating of stainless steel foam VOx/TiO2 catalyst Oxidative dehydrogenation of propane Catalytic foam reactor 

References

  1. 1.
    Di Cosimo R, Burrington JD, Grasselli R (1986) J Catal 102:234CrossRefGoogle Scholar
  2. 2.
    Contractor RM, Ebner J, Mummey MJ (1990) Stud Surf Sci Catal 55:553CrossRefGoogle Scholar
  3. 3.
    Contractor RM, Garnett DI, Horowitz HS, Bergna HE, Patience GS, Schwartz JT, Sisler GM (1994) Stud Surf Sci Catal 82:233CrossRefGoogle Scholar
  4. 4.
    Patience GS, Bockrath RE (2010) Appl Catal A Gen 376:4CrossRefGoogle Scholar
  5. 5.
    Dalmon J-A, Cruz-López A, Farrusseng D, Guilhaume N, Iojoiu E, Jalibert J–C, Miachon S, Mirodatos C, Pantazidis A, Rebeilleau-Dassonneville M, Schuurman Y, van Veen AC (2007) Appl Catal A Gen 325:198CrossRefGoogle Scholar
  6. 6.
    Julbe A, Farrusseng D, Guizard C (2001) J Membr Sci 181:3CrossRefGoogle Scholar
  7. 7.
    Mallada R, Menéndez M, Santamaría J (2000) Catal Today 56:191CrossRefGoogle Scholar
  8. 8.
    Xue E, Ross J (2000) Catal Today 61:3CrossRefGoogle Scholar
  9. 9.
    Lu Y, Dixon AG, Moser WR, Hua Maa Y, Balachandran U (2000) J Membr Sci 170:27CrossRefGoogle Scholar
  10. 10.
    Akin FT, Lin YS (2002) J Membr Sci 209:457CrossRefGoogle Scholar
  11. 11.
    Park S, Gorte RJ, Vohs JM (2000) Appl Catal A Gen 200:55CrossRefGoogle Scholar
  12. 12.
    Löfberg A, Bodet H, Pirovano C, Steil MC, Vannier R-N, Bordes-Richard E (2006) Top Catal 38:169CrossRefGoogle Scholar
  13. 13.
    Löfberg A, Boujmiai S, Capoen E, Steil MC, Pirovano C, Vannier RN, Mairesse G, Bordes-Richard E (2004) Catal Today 91–92C:81Google Scholar
  14. 14.
    Löfberg A, Bodet H, Pirovano C, Steil C, Vannier R-N, Bordes-Richard E (2006) Catal Today 117:168CrossRefGoogle Scholar
  15. 15.
    Sundmacher K, Rihko-Struckmann LK, Galvita V (2005) Catal Today 104:185CrossRefGoogle Scholar
  16. 16.
    Bodet H, Löfberg A, Pirovano C, Steil MC, Vannier RN, Bordes-Richard E (2009) Catal Today 141:260CrossRefGoogle Scholar
  17. 17.
    Abraham F, Debreuille-Gresse MF, Mairesse G, Nowogrocki G (1988) Solid State Ion 28–30:529CrossRefGoogle Scholar
  18. 18.
    Klemm E, Döring H, Geisselmann A, Schirrmeisterds S (2007) Chem Eng Technol 30(12):1615CrossRefGoogle Scholar
  19. 19.
    Stankiewicz A, Moulijn JA (2004) Re-engineering the chemical processing plant: process intensification. Marcel Dekker Inc, New YorkGoogle Scholar
  20. 20.
    Gavriilidis A, Angeli P, Cao E, Yeong KK, Wan YSS (2002) Chem Eng Res Des 80:3CrossRefGoogle Scholar
  21. 21.
    Schimmoeller B, Schulz H, Pratsinis SE, Bareiss A, Reitzmann A, Kraushaar-Czarnetzki B (2006) J Catal 243:82CrossRefGoogle Scholar
  22. 22.
    Giornelli T, Löfberg A, Guillou L, Paul S, Le Courtois V, Bordes-Richard E (2007) Catal Today 128:201CrossRefGoogle Scholar
  23. 23.
    Giornelli T, Löfberg A, Paul S, Bordes-Richard E (2011) Appl Catal A Gen 391:43CrossRefGoogle Scholar
  24. 24.
    Becht S, Franke R, Geißelmann A, Hahn H (2009) Chem Eng Proc 48:329Google Scholar
  25. 25.
    Cavani F (2010) Catal Today 156:8CrossRefGoogle Scholar
  26. 26.
    Grabowski R, Pietrzyk S, Słoczyłski J, Genser F, Wcisło K, Grzybowska–Świerkosz B (2002) Appl Catal A Gen 232:277CrossRefGoogle Scholar
  27. 27.
    Frank B, Dinse A, Ovsitser O, Kondratenko EV, Schomäcker R (2007) Appl Catal A Gen 323:66CrossRefGoogle Scholar
  28. 28.
    Essakhi A, Löfberg A, Supiot P, Mutel B, Paul S, Le Courtois V, Meille V, Pitault I, Bordes-Richard E (2011) Polym Eng Sci 51:940Google Scholar
  29. 29.
    Essakhi A, Löfberg A, Supiot Ph, Mutel B, Paul S, Le Courtois V, Bordes-Richard E (2010) In: Gaigneaux EM, Devillers M, Hermans S, Jacobs P, Martens J, Ruiz P (eds) Proceedings of 10th international symposium “scientific bases for the preparation of heterogeneous catalysts”, vol 175. Studies in Surface Science and Catalysis, p 17, 11–14 July 2010Google Scholar
  30. 30.
    Giornelli T, Löfberg A, Bordes-Richard E (2006) Appl Catal A Gen 305:197CrossRefGoogle Scholar
  31. 31.
    Supiot P, Vivien C, Granier A, Bousquet A, Mackova A, Boufayed F, Escaich D, Raynaud P, Stryhal Z, Pavlik J (2006) Plasma Proc Polym 3:100CrossRefGoogle Scholar
  32. 32.
    Bond GC (1997) Appl Catal A Gen 157:91CrossRefGoogle Scholar
  33. 33.
    Essakhi A, Löfberg A, Paul S, Mutel B, Supiot P, Le Courtois V, Rodriguez P, Meille V, Bordes-Richard E (2011) Microporous Mesoporous Mater 140:81CrossRefGoogle Scholar
  34. 34.
    Hönicke D (1983) Appl Catal 5:179CrossRefGoogle Scholar
  35. 35.
    Giornelli T, Löfberg A, Bordes-Richard E (2005) Thin Solid Films 479:64CrossRefGoogle Scholar
  36. 36.
    Meille V (2006) Appl Catal A Gen 315:1CrossRefGoogle Scholar
  37. 37.
    Heck RM, Gulati S, Farrauto RJ (2001) Chem Eng J 82:149CrossRefGoogle Scholar
  38. 38.
    Sanz O, Echave FJ, Sánchez M, Monzón A, Montes M (2008) Appl Catal A Gen 340:125CrossRefGoogle Scholar
  39. 39.
    Gerisher H (1986) Corros Sci 26:191Google Scholar
  40. 40.
    Guillou L, Balloy D, Supiot Ph, Le Courtois V (2007) Appl Catal A Gen 324:42CrossRefGoogle Scholar
  41. 41.
    Löfberg A, Essakhi A, Swesi Y, Meille V, Pitault I, Zanota M-L, Paul S, Supiot P, Mutel B, Le Courtois V, Bordes-Richard E Chem Eng J (submitted)Google Scholar
  42. 42.
    Schwarz O, Duong P-Q, Schäfer G, Schomäcker R (2009) Chem Eng J 145:420CrossRefGoogle Scholar
  43. 43.
    Cavani F, De Santi D, Luciani S, Löfberg A, Bordes-Richard E, Cortelli C, Leanza R (2010) Appl Catal A Gen 376:66CrossRefGoogle Scholar
  44. 44.
    Bordes E, Contractor R (1996) Topics Catal 3:365CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. Essakhi
    • 1
    • 2
  • A. Löfberg
    • 1
    • 2
  • S. Paul
    • 1
    • 3
  • P. Supiot
    • 4
  • B. Mutel
    • 4
  • V. Le Courtois
    • 1
    • 3
  • E. Bordes-Richard
    • 1
    • 5
  1. 1.Université Lille Nord de FranceLilleFrance
  2. 2.Unité de Catalyse et Chimie du Solide, CNRS—UMR8181Université Lille 1Villeneuve d’AscqFrance
  3. 3.Ecole Centrale LilleVilleneuve d’AscqFrance
  4. 4.Institut d’Electronique, de Microélectronique et de Nanotechnologie—UMR CNRS 8520Université Lille 1Villeneuve d’AscqFrance
  5. 5.Unité de Catalyse et Chimie du Solide, CNRS—UMR8181ENSCL-Université Lille 1Villeneuve d’AscqFrance

Personalised recommendations