Skip to main content
Log in

Küppers–Lortz Instability in the Rotating Brinkman–Bénard Problem

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We investigate the Küppers–Lortz (KL) instability in the rotating Brinkman–Bénard convection problem by assuming that there is local thermal non-equilibrium (LTNE) between the Newtonian liquid and the high-porosity medium that it has occupied to the point of saturation. The effects of local thermal non-equilibrium parameters on the threshold value of the Taylor number and the angle between the rolls at which KL-instability sets in are presented. The four routes through which the local thermal equilibrium situation can be approached are presented with the help of asymptotic analyses. The corresponding results of the rotating Darcy–Bénard problem are extracted as a limiting case from the present problem with the help of another asymptotic analysis. The problem identifies the specific range of values of parameters within which LTNE effect is discernible and also clearly shows that the onset of KL-instability is delayed by the ratio of thermal conductivities. The heat transfer coefficient, however, has a dual effect on \({\mathrm{Ta}}_{\mathrm{c}}\). Such a dual nature is seen, perhaps, due to the heat transport equations being of the hyperbolic type when local thermal non-equilibrium effect is significant. The results show that LTNE in the presence of rotation favors hexagonal pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(c_{\mathrm{p}}\) :

Specific heat at constant pressure (\({\mathrm{J\, kg}}^{-1}\,{\mathrm{K}}^{-1}\))

d :

Channel depth (m)

\({\mathbf {g}}\) :

Acceleration due to gravity (\({\mathrm{m\, s}}^{-2}\))

h :

Interphase heat transfer coefficient (\({\mathrm{W\, m}}^{-2}\,{\mathrm{K}}^{-1}\))

H :

Dimensionless interphase heat transfer coefficient

k :

Horizontal wave number (\({\mathrm{m}}^{-1}\))

\(k_1\) :

Wave number in the x-direction (\({\mathrm{m}}^{-1}\))

\(k_2\) :

Wave number in the y-direction (\({\mathrm{m}}^{-1}\))

K :

Permeability (\({\mathrm{m}}^{2}\))

p :

Growth parameter

t :

Time (s)

P :

Pressure (\({\mathrm{kg\, m}}^{-1}{\mathrm{s}}^{-2}\))

Pr:

Prandtl number

\({\mathbf {q}}\) :

Filtration velocity or Darcy velocity (\({\mathrm{m\,s}}^{-1})\)

T :

Temperature (K)

Ta:

Taylor number

xyz :

Cartesian coordinate

XYZ :

Dimensionless coordinates

\(\alpha\) :

Thermal expansion coefficient (\({\mathrm{K}}^{-1}\))

\(\gamma\) :

Porosity-modified ratio of thermal conductivities

\(\varGamma\) :

Ratio of thermal diffusitivities

\(\kappa\) :

Thermal conductivity (\({\mathrm{W\,m}}^{-1}{\mathrm{K}}^{-1}\))

\(\varLambda\) :

Viscosity ratio (Givler and Altobelli 1994)

\(\mu\) :

Dynamic viscosity (\({\mathrm{kg\,m}}^{-1}{\mathrm{s}}^{-1}\))

\({{\varvec{\Omega }}}\) :

Angular velocity

\(\phi\) :

Porosity (\(0<\phi <1\))

\(\rho\) :

Density (\({\mathrm{kg\,m}}^{-3}\))

\(\sigma ^2\) :

Inverse Darcy number or porous parameter

\(\tau\) :

Dimensionless time

\(\Theta\) :

Dimensionless temperature

0:

Reference value

b:

Basic state

BBC:

Brinkman–Bénard convection

c:

Critical

DBC:

Darcy–Bénard convection

f:

Fluid

LTE:

Local thermal equilibrium

LTNE:

Local thermal non-equilibrium

RBC:

Rayleigh–Bénard convection

s:

Solid

References

  • Banu, N., Rees, D.A.S.: Onset of Darcy–Bénard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 45, 2221–2228 (2002)

    Article  Google Scholar 

  • Bhadauria, B.S., Khan, A., Om, P.S.: Modulated centrifugal convection in a vertical rotating porous layer distant from the axis of rotation. Transp. Porous Media 79, 255–364 (2009)

    Article  Google Scholar 

  • Bhattacharjee, J.K.: Convective instability in a rotating fluid layer under modulation of the rotating rate. Phys. Rev. A 41, 5491–5494 (1990)

    Article  Google Scholar 

  • Bhattacharjee, J.K., McKane, A.J.: Lorenz model for the rotating Rayleigh–Bénard problem. J. Phys. A Math. Gen. 21, L555–L558 (1988)

    Article  Google Scholar 

  • Celli, M., Barletta, A., Storesletten, L.: Local thermal non-equilibrium effects in the Darcy–Bénard instability of a porous layer heated from below by a uniform flux. Int. J. Heat Mass Transf. 67, 902–912 (2013)

    Article  Google Scholar 

  • Celli, M., Lagziri, H., Bezzazi, M.: Local thermal non-equilibrium effects in the Horton–Rogers–Lapwood problem with a free surface. Int. J. Therm. Sci. 116, 254–264 (2017)

    Article  Google Scholar 

  • Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)

    Google Scholar 

  • Clever, R.M., Busse, F.H.: Nonlinear properties of convection rolls in a horizontal layer rotating about a vertical axis. J. Fluid Mech. 94, 609–627 (1979)

    Article  Google Scholar 

  • Clune, T., Knobloch, E.: Pattern selection in rotating convection with experimental boundary conditions. Phys. Rev. E 47, 2536–2550 (1993)

    Article  Google Scholar 

  • Cox, S.M., Matthews, P.C.: Instability of rotating convection. J. Fluid Mech. 403, 153–172 (2000)

    Article  Google Scholar 

  • Desaive, T., Hennenberg, M., Lebon, G.: Thermal instability of a rotating saturated porous medium heated from below and submitted to rotation. Eur. Phys. J. B 29, 641–647 (2002)

    Article  Google Scholar 

  • Givler, R.C., Altobelli, S.A.: A determination of the effective viscosity for the Brinkman–Forchheimer flow model. J. Fluid Mech. 258, 355–370 (1994)

    Article  Google Scholar 

  • Govender, S.: Coriolis effect on the linear stability of convection in a porous layer placed far away from the axis of rotation. Transp. Porous Media 51, 315–326 (2003)

    Article  Google Scholar 

  • Hu, Y., Pesch, W., Ahlers, G., Ecke, R.E.: Convection under rotation for Prandtl numbers near 1: Küppers–Lortz instability. Phys. Rev. E 58, 5821–5833 (1998)

    Article  Google Scholar 

  • Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media. Elsevier, London (1998)

    Google Scholar 

  • Knobloch, E.: Rotating convection: recent developments. Int. J. Eng. Sci. 36, 1421–1450 (1998)

    Article  Google Scholar 

  • Küppers, G., Lortz, D.: Transition from laminar convection to thermal turbulence in a rotating fluid layer. J. Fluid Mech. 35, 609–620 (1969)

    Article  Google Scholar 

  • Lappa, M.: Rotating Thermal Flows in Natural and Industrial Processes. Wiley, London (2012)

    Book  Google Scholar 

  • Malashetty, M.S., Swamy, M.: The effect of rotation on the onset of convection in a horizontal anisotropic porous layer. Int. J. Therm. Sci. 46, 1023–1032 (2007)

    Article  Google Scholar 

  • Malashetty, M.S., Swamy, M.: Effect of rotation on the onset of thermal convection in a sparsely packed porous layer using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 53, 3088–3101 (2010)

    Article  Google Scholar 

  • Malashetty, M.S., Swamy, M., Kulkarni, S.: Thermal convection in a rotating porous layer using a thermal nonequilibrium model. Phys. Fluids 19, 054102-1–054102-16 (2007)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2006)

    Google Scholar 

  • Niemela, J.J., Donnelly, R.J.: Direct transition to turbulence in rotating Bénard convection. Phys. Rev. Lett. 57, 2524–2527 (1986)

    Article  Google Scholar 

  • Palm, E., Tyvand, P.A.: Thermal convection in a rotating porous layer. Z. Angew. Math. Phys. 35, 122–123 (1984)

    Article  Google Scholar 

  • Postelnicu, A.: The onset of a Darcy-Brinkman convection using a thermal nonequilibrium model. Part II. Int. J. Therm. Sci. 47, 1587–1594 (2008)

    Article  Google Scholar 

  • Postelnicu, A., Rees, D.A.S.: The onset of Darcy–Brinkman convection in a porous layer using a thermal nonequlibrium model part I: stress-free boundaries. Int. J. Eng. Res. 27, 961–973 (2003)

    Google Scholar 

  • Rameshwar, Y., Sultana, S., Tagare, S.: Küppers–Lortz instability in rotating Rayleigh–Bénard convection in a porous medium. Meccanica 48, 2401–2414 (2013)

    Article  Google Scholar 

  • Rees, D.A.S., Bassom, A.P., Siddheshwar, P.G.: Local thermal non-equilibrium effects arising from the injection of a hot fluid into a porous medium. J. Fluid Mech. 594, 379–398 (2008)

    Article  Google Scholar 

  • Rossby, H.T.: A study of Bénard convection with and without rotation. J. Fluid Mech. 36, 309–335 (1969)

    Article  Google Scholar 

  • Siddheshwar, P.G., Siddabasappa, C.: Linear and weakly nonlinear stability analyses of two-dimensional, steady Brinkman–Bénard convection using local thermal non-equilibrium model. Transp. Porous Media 120, 605–631 (2017)

    Article  Google Scholar 

  • Straughan, B.: A sharp nonlinear stability threshold in rotating porous convection. Proc. R. Soc. A. 457, 87–93 (2001)

    Article  Google Scholar 

  • Straughan, B.: Convection with Local Thermal Non-equilibrium and Microfluidic Effects. Springer, New York (2015)

    Book  Google Scholar 

  • Vadasz, P.: Stability of free convection in a rotating porous layer distant from the axis of rotation. Transp. Porous Media 23, 153–173 (1996)

    Article  Google Scholar 

  • Vadasz, P.: Coriolis effect on gravity-driven convection in a rotating porous layer heated from below. J. Fluid Mech. 376, 351–375 (1998)

    Article  Google Scholar 

  • Vadasz, P.: Fluid Flow and Heat Transfer in Rotating Porous Media. Springer, Basel (2016)

    Book  Google Scholar 

  • Vanishree, R.K., Siddheshwar, P.G.: Effect of rotation on thermal convection in an anisotropic porous medium with temperature-dependent viscosity. Transp. Porous Media 81, 73–87 (2009). https://doi.org/10.1007/s11242-009-9385-2

    Article  Google Scholar 

  • Veronis, G.: Cellular convection with finite amplitude in a rotating fluid. J. Fluid Mech. 5, 401–435 (1959)

    Article  Google Scholar 

  • Zhong, F., Ecke, R.E., Steinberg, V.: Rotating Rayleigh–Bénard convection: Küppers–Lortz transition. Physica D Nonlinear Phenom. 51, 596–607 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

DL acknowledges partial financial support from FONDECYT 1180905 and Centers of Excellence with BASAL/CONICYT financing, Grant AFB180001, CEDENNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Siddheshwar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddheshwar, P.G., Siddabasappa, C. & Laroze, D. Küppers–Lortz Instability in the Rotating Brinkman–Bénard Problem. Transp Porous Med 132, 465–493 (2020). https://doi.org/10.1007/s11242-020-01401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01401-4

Keywords

Navigation