Skip to main content
Log in

Joint gas-phase electron diffraction and quantum chemical study of conformational landscape and molecular structure of sulfonamide drug sulfanilamide

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Conformational composition and molecular structure of sulfanilamide (para-aminobenzenesulfonamide, SA) has been investigated by means of gas electron diffraction (GED) and quantum chemical (QC) calculations. Conformations with eclipsed orientation of the S=O and the N–H bonds in the sulfonamide moiety have been found to be predominant in vapor at the average temperature of the GED experiment of 184(5) °C. The structural parameters of the most stable conformer are the following (rh1 in Å and ∠h1 in ° with 3σ in parenthesis): r(C=C) av = 1.410(4), r(S=O)av = 1.433(4), r(C–S) = 1.763(6), r(S–N) = 1.649(6), ∠CSN = 104.7(15), (∠CSO)av = 109.0(8). The orientation of the S–N bond of the sulfonamide group about the anilinic ring plane has been found to be different from orthogonal by about 13°. It has been shown that QC calculations tend to overestimate the values the S=O bond lengths as well as are not always accurate in the prediction of mutual orientation of the sulfonamide group and the anilinic ring plane. While in the gas phase, low energy conformations are found to be the most abundant; the molecular structure of SA in the crystal phase resembles a high energy conformation with staggered orientation of the N–H and the S=O bonds for all polymorph modifications. The mechanisms of mutual transformations of different SA conformers into each other have also been considered and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hager T (2006) The demon under the microscope: from battlefield hospitals to Nazi labs, one doctor’s heroic search for the world’s first miracle drug. Harmony Books ISBN: 1-4000-8214-5

  2. Domagk G (1935). Dtsch Med Wochenschr 61:250–253

    CAS  Google Scholar 

  3. Miert ASJPAMV (1994). J Vet Pharmacol Therap 17:309–316

    Google Scholar 

  4. Woods DD (1962). J Gen Microbiol 29:687–702

    CAS  Google Scholar 

  5. Sköld O (2000). Drug Resist Updat 3:155–160

    PubMed  Google Scholar 

  6. Achari A, Somers DO, Champness JN, Bryant PK, Rosemond J, Stammers DK (1997). Nat Struct Biol 4:490–497

    CAS  PubMed  Google Scholar 

  7. Carta F, Supuran CT, Scozzafava A (2014). Future Med Chem 61:1149–1165

    Google Scholar 

  8. La Regina G, Coluccia A, Famiglini V, Pelliccia S, Monti L, Vullo D, Nuto E, Alterio V, De Simone G, Monti SM, Pan P, Parkkila S, Supuran CT, Rossello A, Silvestri R (2015). J Med Chem 58:8564–8572

    PubMed  Google Scholar 

  9. Yamada A, Kazui Y, Yoshioka H, Tanatani A, Mori S, Kagechika H, Fujii S (2016). ACS Med Chem Lett 7:1028–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Connor BH, Maslen EN (1965). Acta Cryst 18:363–366

    Google Scholar 

  11. Threlfall TL, Coles SJ, Ward SC, Hursthouse MB, University of Southampton, Crystal Structure Report Archive (1999) 166. https://doi.org/10.5258/ecrystals/166

  12. Coles SJ, Hursthouse MB, Ward SC , Threlfall TL, (1999),University of Southampton, Crystal Structure Report Archive, 170. https://doi.org/10.5258/ecrystals/166

  13. Alléaume M, Decap J (1965). Acta Cryst 18:731–736

    Google Scholar 

  14. O’Connell AM, Maslen EN (1967). Acta Cryst 22:134–145

    Google Scholar 

  15. Alléaume M , Decap J (1965) Acta Cryst 19:934–938

  16. Gelbrich T, Bingham AL, Threlfall T, Hursthouse MB (2008) Acta Cryst. Sect C: Cryst Struct Commun 64:o205–o207

    CAS  Google Scholar 

  17. Toscani S, Dzyabchenko A, Agafonov V, Dugue J, Ceolin R (1996). Pharm Res 13:151–154

    CAS  PubMed  Google Scholar 

  18. Toscani S (1998). Thermochim Acta 321:73–79

    CAS  Google Scholar 

  19. Portieri A, Harris RK, Fletton RA, Lancaster RW, Threlfall TL (2004). Magn Reson Chem 42:313–320

    CAS  PubMed  Google Scholar 

  20. Frydman L, Olivieri AC, Diaz LE, Frydman B, Schmidt A, Vega S (1990). Mol Phys 70:563–579

    CAS  Google Scholar 

  21. Borba A, Gomez-Zavaglia A, Fausto R (2013). J Phys Chem 117:704–717

    CAS  Google Scholar 

  22. Popova AD, Georgieva MK, Petrov OI, Petrova KV, Velcheva EA (2007). Int J Quantum Chem 107:1752–1764

    CAS  Google Scholar 

  23. Soriano-Correa C, Esquivel RO, Sagar RP (2003). Int J Quantum Chem 94:165–172

    CAS  Google Scholar 

  24. Gomes JRB, Gomes P (2005). Tetrahedron 61:2705–2712

    CAS  Google Scholar 

  25. Vega-Hissi EG, Anrada MF, Zamarbide GN, Estrada MR (2011) Toma’s-Vert F. J Mol Model 17:1317–1323

    CAS  PubMed  Google Scholar 

  26. Uhlemann T, Sebastian S, Muller C (2017). Phys Chem Chem Phys 22:14625–14640

    Google Scholar 

  27. Giricheva NI, Girichev GV, Medvedeva YS, Ivanov SN, Petrov VM, Fedorov MS (2012). J Mol Struct 1023:25–30

    CAS  Google Scholar 

  28. Petrov VM, Giricheva NI, Girichev GV, Petrova VN, Ivanov SN, Bardina AV (2011). J Struct Chem 52(1):60–68

    CAS  Google Scholar 

  29. Giricheva NI, Girichev GV, Fedorov MS, Ivanov SN (2013). Struct Chem 24(3):807–818

    CAS  Google Scholar 

  30. Giricheva NI, Girichev GV, Medvedeva YS, Ivanov SN, Petrov VM (2012). Struct Chem 23:895–903

    CAS  Google Scholar 

  31. Giricheva NI, Fedorov MS, Ivanov SN, Girichev GV (2015). J Mol Struct 1085:191–197

    CAS  Google Scholar 

  32. Petrov VM, Petrova VN, Girichev GV, Oberhammer H, Giricheva NI, Ivanov S (2006). J Organomet Chem 71:2952–2956

    CAS  Google Scholar 

  33. Petrov VM, Girichev GV, Oberhammer H, Petrova VN, Giricheva NI, Bardina AV, Ivanov SN (2008). J Phys Chem A 112:2969–2976

    CAS  PubMed  Google Scholar 

  34. Giricheva NI, Petrov VM, Dakkouri M, Oberhammer H, Petrova VN, Shlykov SA, Ivanov SN, Girichev GV (2014). J Phys Chem A 119:1502–1510

    PubMed  Google Scholar 

  35. Vishnevskiy YV, UNEX 16–1075-gd85e256d. https://unexprog.org

  36. Becke AD (1988). Phys Rev A 38(6):3098–3100

  37. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789

    CAS  Google Scholar 

  38. Møller C, Plesset MS (1934). Phys Rev 46:618–622

    Google Scholar 

  39. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988). J Chem Phys 89:2193–2218

    CAS  Google Scholar 

  40. Dunning TH (1989). J Chem Phys 90:1007–1023

    CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  42. Vishnevskiy YV, Zhabanov YA (2015). J Phys Conf Ser 633:012076

    Google Scholar 

  43. Kovacs A, Hargittai I (2000). Struct Chem 11:193–201

    CAS  Google Scholar 

  44. Campanelli AR, Domenicano A, Ramondo F, Hargittai I (2004). J Phys Chem A 108:4940–4948

    CAS  Google Scholar 

  45. Hargittai I (1985) The structure of volatile sulphur compounds. Reidel Publ. Co., Dordrecht, pp 240–264

    Google Scholar 

  46. Hargittai M, Hargittai I (1987). Phys Chem Miner 14:413–425

    CAS  Google Scholar 

  47. Gillespie RJ, Hargittai I (1991 and 2012) The VSEPR model of molecular geometry. Dover, Mineola, pp 137–139

    Google Scholar 

  48. Hagen K, Cross VR, Hedberg KJ (1978). J Mol Struct 44:187–193

    CAS  Google Scholar 

  49. Brunvoll J, Exner O, Hargittai I, Kolonits M, Scharfenberg P (1984). J Mol Struct 117:317–322

    CAS  Google Scholar 

Download references

Acknowledgments

The authors express their deepest gratitude to Prof. G. V. Girichev of the Ivanovo State University of Chemistry and Technology for providing valuable structural data, which were very useful for the investigation described in this manuscript. We also very much appreciate the helpful suggestions made by a reviewer.

Funding

This project was made with financial support of the Russian Foundation for Basic Research (Grant number 18-33-00546 mol_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna N. Kolesnikova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikova, I.N., Rykov, A.N., Kuznetsov, V.V. et al. Joint gas-phase electron diffraction and quantum chemical study of conformational landscape and molecular structure of sulfonamide drug sulfanilamide. Struct Chem 31, 1353–1362 (2020). https://doi.org/10.1007/s11224-020-01528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01528-6

Keywords

Navigation