Advertisement

Structural Chemistry

, Volume 26, Issue 5–6, pp 1411–1423 | Cite as

Accurate modeling of cation–π interactions in enzymes: a case study on the CDPCho:phosphocholine cytidylyltransferase complex

  • Anikó Lábas
  • Balázs Krámos
  • Imre Bakó
  • Julianna OláhEmail author
Original Research

Abstract

Cation–π interactions are functionally relevant, strong secondary interactions that play versatile roles in a variety of chemical and biological systems. Therefore, it is very important to be able to describe accurately and reliably these interactions. In this study, we propose a methodology for the accurate modeling of cation–π interactions in proteins using QM/MM calculations. We developed a methodology for computing the many-body interaction energy terms and tested the effect of various factors on the accuracy of the binding energy. We found that once well-equilibrated structures were reached in the MD simulations, very similar results can be obtained for the various snapshots taken from the trajectory. The calculated interaction energies were only slightly influenced by electrostatic embedding of the point charges in the QM/MM calculations and by QM/MM geometry optimization. The calculated molecular mechanics interaction energies were off by 50 % for cation–π interactions. Instead, we suggest the calibration of force fields based on fragment-based QM calculations on geometries obtained from MD simulations to yield reliable binding energies at reduced computational cost.

Keywords

Cation–π interaction Energy decomposition CDPCho:phosphocholine cytidylyltransferase 

Notes

Acknowledgments

The authors thank Dr. Goedele Roos (ULB, Belgium), Gergely N. Nagy, and Dr. Andras T. Rokob (MTA TTK, Hungary) for careful reading of the manuscript and helpful discussions. We are grateful for the support of the New Széchenyi Plan TAMOP-4.2.2/B-10/1-2010-0009 and for the financial support of OTKA Grant No. 108721. J.O. acknowledges receipt of a Bolyai János Research Fellowship. A.L. acknowledges the financial support of Richter Gedeon Talentum Foundation.

Supplementary material

11224_2015_658_MOESM1_ESM.docx (27 kb)
Supplementary material 1 (DOCX 26 kb)

References

  1. 1.
    Cerny J, Hobza P (2007) Non-covalent interactions in biomacromolecules. Phys Chem Chem Phys 9:5291–5303CrossRefGoogle Scholar
  2. 2.
    Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14:133–141CrossRefGoogle Scholar
  3. 3.
    Zacharias N, Dougherty DA (2002) Cation-pi interactions in ligand recognition and catalysis. Trends Pharmacol Sci 23:281–287CrossRefGoogle Scholar
  4. 4.
    Dougherty DA (2013) The cation-π interaction. Acc Chem Res 46:885–893CrossRefGoogle Scholar
  5. 5.
    Luhmer M, Bartik K, Dejaegere A, Bovy P, Reisse J (1994) The importance of quadrupolar interactions in molecular recognition processes involving a phenyl group. Bull Soc Chim Fr 131:603–606Google Scholar
  6. 6.
    Williams JH (1993) The molecular electric quadrupole-moment and solid-state architecture. Acc Chem Res 26:593–598CrossRefGoogle Scholar
  7. 7.
    McCurdy A, Jimenez L, Stauffer DA, Dougherty DA (1992) Biomimetic catalysis of Sn2 reactions through cation-pi interactions—the role of polarizability in catalysis. J Am Chem Soc 114:10314–10321CrossRefGoogle Scholar
  8. 8.
    Ma JC, Dougherty DA (1997) The cation-pi interaction. Chem Rev 97:1303–1324CrossRefGoogle Scholar
  9. 9.
    Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci USA 96:9459–9464CrossRefGoogle Scholar
  10. 10.
    Martz E (2002) Protein explorer: easy yet powerful macromolecular visualization. Trends Biochem Sci 27:107–109CrossRefGoogle Scholar
  11. 11.
    Scior T, Bender A, Tresadern G, Medina-Franco JL, Martinez-Mayorga K, Langer T, Cuanalo-Contreras K, Agrafiotis DK (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 52:867–881CrossRefGoogle Scholar
  12. 12.
    Wein S, Maynadier M, Bordat Y, Perez J, Maheshwari S, Bette-Bobillo P, Ba CTV, Penarete-Vargas D, Fraisse L, Cerdan R, Vial H (2012) Transport and pharmacodynamics of albitiazolium, an antimalarial drug candidate. Br J Pharmacol 166:2263–2276CrossRefGoogle Scholar
  13. 13.
    Vial HJ, Wein S, Farenc C, Kocken C, Nicolas O, Ancelin ML, Bressolle F, Thomas A, Calas M (2004) Prodrugs of bisthiazolium salts are orally potent antimalarials. Proc Natl Acad Sci USA 101:15458–15463CrossRefGoogle Scholar
  14. 14.
    Nagy GN, Marton L, Contet A, Ozohanics O, Ardelean L-M, Revesz A, Vekey K, Irimie FD, Vial H, Cerdan R, Vertessy BG (2014) Composite aromatic boxes for enzymatic transformations of quaternary ammonium substrates. Angew Chem Int Ed 53:13471–13476CrossRefGoogle Scholar
  15. 15.
    Kwak BY, Zhang YM, Yun M, Heath RJ, Rock CO, Jackowski S, Park HW (2002) Structure and mechanism of ctp: phosphocholine cytidylyltransferase (licc) from Streptococcus pneumoniae. J Biol Chem 277:4343–4350CrossRefGoogle Scholar
  16. 16.
    Veitch DP, Gilham D, Cornell RB (1998) The role of histidine residues in the hxgh site of ctp: phosphocholine cytidylyltransferase in ctp binding and catalysis. Eur J Biochem 255:227–234CrossRefGoogle Scholar
  17. 17.
    Lee J, Johnson J, Ding Z, Paetzel M, Cornell RB (2009) Crystal structure of a mammalian ctp: phosphocholine cytidylyltransferase catalytic domain reveals novel active site residues within a highly conserved nucleotidyltransferase fold. J Biol Chem 284:33535–33548CrossRefGoogle Scholar
  18. 18.
    Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Truhlar DG (2008) The m06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  20. 20.
    Becke AD (1993) Density-functional thermochemistry iii. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  21. 21.
    Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401CrossRefGoogle Scholar
  22. 22.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu. J Chem Phys 132:154104CrossRefGoogle Scholar
  23. 23.
    Kendall RA, Dunning TH, Harrison RJ (1992) Electron-affinities of the 1st-row atoms revisited—systematic basis-sets and wave-functions. J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09. Revision A.1 edn. Gaussian, Inc., Wallingford, CTGoogle Scholar
  25. 25.
    Boys SF, Bernardi F (2002) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (reprinted from molecular physics, vol 19, p 553–566, 1970). Mol Phys 100:65–73CrossRefGoogle Scholar
  26. 26.
    Glendening ED, Streitwieser A (1994) Natural energy decomposition analysis—an energy partitioning procedure for molecular-interactions with application to weak hydrogen-bonding, strong ionic, and moderate donor–acceptor interactions. J Chem Phys 100:2900–2909CrossRefGoogle Scholar
  27. 27.
    Weinhold F (2012) Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives. J Comput Chem 33:2363–2379CrossRefGoogle Scholar
  28. 28.
    Nagy GN, Marton L, Krámos B, Oláh J, Révész Á, Vékey K, Delsuc F, Hunyadi-Gulyás É, Medzihradszky KF, Lavigne M, Vial H, Cerdan R, Vértessy BG (2013) Evolutionary and mechanistic insights into substrate and product accommodation of ctp: phosphocholine cytidylyltransferase from Plasmodium falciparum. FEBS J 280:3132–3148CrossRefGoogle Scholar
  29. 29.
    Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pk(a) values. Proteins: Struct, Funct, Bioinf 61:704–721CrossRefGoogle Scholar
  30. 30.
    Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pk(a) values for protein-ligand complexes. Proteins Struct Funct Bioinform 73:765–783CrossRefGoogle Scholar
  31. 31.
    Olsson MHM, Sondergaard CR, Rostkowski M, Jensen JH (2011) Propka3: consistent treatment of internal and surface residues in empirical pk(a) predictions. J Chem Theory Comput 7:525–537CrossRefGoogle Scholar
  32. 32.
    Sondergaard CR, Olsson MHM, Rostkowski M, Jensen JH (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pk(a) values. J Chem Theory Comput 7:2284–2295CrossRefGoogle Scholar
  33. 33.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  34. 34.
    Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) Charmm: the biomolecular simulation program. J Comput Chem 30:1545–1614CrossRefGoogle Scholar
  35. 35.
    MacKerell AD, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56:257–265CrossRefGoogle Scholar
  36. 36.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38CrossRefGoogle Scholar
  37. 37.
    Feller SE, MacKerell AD (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104(31):7510–7515CrossRefGoogle Scholar
  38. 38.
    Harvey JN (2004) Spin-forbidden co ligand recombination in myoglobin. Faraday Discuss 127:165–177CrossRefGoogle Scholar
  39. 39.
    Tinker—home page. Tinker—software tools for molecular design. http://dasher.Wustl.Edu/tinker/. Accessed 5 Oct 2011
  40. 40.
    Ren P, Wu C, Ponder JW (2011) Polarizable atomic multipole-based molecular mechanics for organic molecules. J Chem Theory Comput 7:3143–3161CrossRefGoogle Scholar
  41. 41.
    Hodges MP, Stone AJ, Xantheas SS (1997) Contribution of many-body terms to the energy for small water clusters: a comparison of ab initio calculations and accurate model potentials. J Phys Chem A 101:9163–9168CrossRefGoogle Scholar
  42. 42.
    Xantheas SS (2000) Cooperativity and hydrogen bonding network in water clusters. Chem Phys 258:225–231CrossRefGoogle Scholar
  43. 43.
    Padgett CL, Hanek AP, Lester HA, Dougherty DA, Lummis SC (2007) Unnatural amino acid mutagenesis of the gaba(a) receptor binding site residues reveals a novel cation-pi interaction between gaba and beta 2tyr97. J Neurosci 27:886–892CrossRefGoogle Scholar
  44. 44.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2009) NBO 5.9. Theoretical Chemistry Institute, University of Wisconsin, Madison, WIGoogle Scholar
  45. 45.
    Olah J, van Bergen L, De Proft F, Roos G (2015) How does the protein environment optimize the thermodynamics of thiol sulfenylation? Insights from model systems to qm/mm calculations on human 2-cys peroxiredoxin. J Biomol Struct Dyn 33:584–596CrossRefGoogle Scholar
  46. 46.
    Lonsdale R, Olah J, Mulholland AJ, Harvey JN (2011) Does compound I vary significantly between isoforms of cytochrome p450? J Am Chem Soc 133:15464–15474CrossRefGoogle Scholar
  47. 47.
    Saha S, Sastry GN (2015) Cooperative or anticooperative: how noncovalent interactions influence each other. J Phys Chem B ASAP. doi: 10.1021/acs.jpcb.5b03005 Google Scholar
  48. 48.
    Xu M, Lill MA (2013) Induced fit docking, and the use of qm/mm methods in docking. Drug Discov Today Technol 10:e411–e418CrossRefGoogle Scholar
  49. 49.
    Yilmazer ND, Korth M (2013) Comparison of molecular mechanics, semi-empirical quantum mechanical, and density functional theory methods for scoring protein–ligand interactions. J Phys Chem B 117:8075–8084CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anikó Lábas
    • 1
  • Balázs Krámos
    • 1
    • 2
  • Imre Bakó
    • 2
  • Julianna Oláh
    • 1
    Email author
  1. 1.Department of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Institute of Organic Chemistry Research Centre for Natural SciencesHungarian Academy of ScienceBudapestHungary

Personalised recommendations