Advertisement

Space Science Reviews

, 214:56 | Cite as

Evolution of the Sunspot Number and Solar Wind \(B\) Time Series

  • Edward W. Cliver
  • Konstantin Herbst
Article
  • 257 Downloads
Part of the following topical collections:
  1. The Scientific Foundation of Space Weather

Abstract

The past two decades have witnessed significant changes in our knowledge of long-term solar and solar wind activity. The sunspot number time series (1700-present) developed by Rudolf Wolf during the second half of the 19th century was revised and extended by the group sunspot number series (1610–1995) of Hoyt and Schatten during the 1990s. The group sunspot number is significantly lower than the Wolf series before ∼1885. An effort from 2011–2015 to understand and remove differences between these two series via a series of workshops had the unintended consequence of prompting several alternative constructions of the sunspot number. Thus it has been necessary to expand and extend the sunspot number reconciliation process. On the solar wind side, after a decade of controversy, an ISSI International Team used geomagnetic and sunspot data to obtain a high-confidence time series of the solar wind magnetic field strength (\(B\)) from 1750-present that can be compared with two independent long-term (> ∼600 year) series of annual \(B\)-values based on cosmogenic nuclides. In this paper, we trace the twists and turns leading to our current understanding of long-term solar and solar wind activity.

Keywords

Sunspot number solar wind magnetic field strength 

Notes

Acknowledgements

E.W.C. thanks Daniel Baker, André Balogh, Tamás Gombosi, Hannu Koskinen, Rudolf von Steiger, and Astrid Veronig for organizing the ISSI Workshop on The Scientific Foundation of Space Weather and the invitation to speak on long-term solar variability. He is grateful to ISSI for supporting both this Workshop and, previously, the Svalgaard, Lockwood, and Beer International Team on Long-term reconstruction of Solar and Solar Wind Parameters. He thanks Leif Svalgaard for the translation of the Wolf (1856) article. K.H. thanks Jürg Beer, Ken McCracken, Bernd Heber, and Raimund Muscheler for their support and many insightful discussions over the past years.

References

  1. K. Alanko-Huotari, K. Mursula, I. Usoskin, G. Kovaltsov, Global heliospheric parameters and cosmic-ray modulation: an empirical relation for the last decades. Sol. Phys. 238, 391 (2006).  https://doi.org/10.1007/s11207-006-0233-z ADSCrossRefGoogle Scholar
  2. C.N. Arge, E. Hildner, V.J. Pizzo, J.W. Harvey, Two solar cycles of nonincreasing magnetic flux. J. Geophys. Res. 107, 1319 (2002).  https://doi.org/10.1029/2001JA000503 CrossRefGoogle Scholar
  3. A. Balogh, E.J. Smith, B.T. Tsurutani, D.J. Southwood, R.J. Forsyth, T.S. Horbury, The heliospheric magnetic field over the South polar region of the Sun. Science 286, 1007 (1995).  https://doi.org/10.1126/science.268.5213.1007 ADSCrossRefGoogle Scholar
  4. E. Bard, G. Raisbeck, F. Yiou, J. Jouzel, Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 52, 985 (2000).  https://doi.org/10.1034/j.1600-0889.2000.d01-7.x ADSCrossRefGoogle Scholar
  5. J. Bartels, Terrestrial-magnetic activity and its relations to solar phenomena. Terr. Magn. Atmos. Electr. 37, 1 (1932).  https://doi.org/10.1029/TE037i001p00001 zbMATHCrossRefGoogle Scholar
  6. J. Bartels, Solar eruptions and their ionospheric effects—a classical observation and its new interpretation. Terr. Magn. Atmos. Electr. 42, 235 (1937).  https://doi.org/10.1029/TE042i003p00235 CrossRefGoogle Scholar
  7. J. Beer, S. Tobias, N. Weiss, An active Sun throughout the Maunder Minimum. Sol. Phys. 181, 237 (1998).  https://doi.org/10.1023/A:1005026001784 ADSCrossRefGoogle Scholar
  8. J. Beer, K.G. McCracken, R. von Steiger, Cosmogenic Radionuclides: Theory and Applications in the Terrestrial and Space Environments (Springer, Berlin, 2012). p. 54 ff., p. 227 ff., p. 267 ff. CrossRefGoogle Scholar
  9. G. Bonino, G. Cini Castagnoli, N. Bhandari, C. Taricco, Behavior of the heliosphere over prolonged solar quiet periods by 44Ti measurements in meteorites. Science 270, 1648 (1995).  https://doi.org/10.1126/science.270.5242.1648 ADSCrossRefGoogle Scholar
  10. A.-M. Berggren, J. Beer, G. Possnert, A. Aldahan, P. Kubik, M. Christl, S.J. Johnsen et al., A 600-year annual 10Be record from the NGRIP ice core, Greenland. Geophys. Res. Lett. 36, L11801 (2009).  https://doi.org/10.1029/2009GL038004 ADSCrossRefGoogle Scholar
  11. R.A. Caballero-Lopez, H. Moraal, Limitations of the force field equation to describe cosmic ray modulation. J. Geophys. Res. 109, A01101 (2004).  https://doi.org/10.1029/2003JA010098 ADSGoogle Scholar
  12. R.C. Carrington, On the distribution of the solar spots in latitudes since the beginning of the year 1854, with a map. Mon. Not. R. Astron. Soc. 19, 1 (1858).  https://doi.org/10.1093/mnras/19.1.1 ADSCrossRefGoogle Scholar
  13. R.C. Carrington, On certain phenomena in the motions of solar spots. Mon. Not. R. Astron. Soc. 19, 81 (1859a).  https://doi.org/10.1093/mnras/19.3.81 ADSCrossRefGoogle Scholar
  14. R.C. Carrington, Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. R. Astron. Soc. 20, 13 (1859b).  https://doi.org/10.1093/mnras/20.1.13 ADSCrossRefGoogle Scholar
  15. R.C. Carrington, Observations of the Spots on the Sun from November 9, 1853 to March 24, 1861 (Williams and Norgate, London, 1863) Google Scholar
  16. G. Castagnoli, D. Lal, Solar modulation effects in terrestrial production of carbon-14. Radiocarbon 22, 133 (1980) CrossRefGoogle Scholar
  17. T. Chatzistergos, I.G. Usoskin, G.A. Kovaltsov, N.A. Krivova, S.K. Solanki, New reconstruction of the sunspot group number since 1739 using the direct calibration and ‘backbone’ methods. Astron. Astrophys. 602, A69 (2017).  https://doi.org/10.1051/0004-6361/201630045 ADSCrossRefGoogle Scholar
  18. A.M. Clerke, A Popular History of Astronomy During the Nineteenth Century, 4th edn. (Adam and Charles Black, London, 1902), p. 125 Google Scholar
  19. F. Clette, L. Lefèvre, The new sunspot number: assembling all corrections. Sol. Phys. 291, 2629 (2016).  https://doi.org/10.1007/s11207-016-1014-y ADSCrossRefGoogle Scholar
  20. F. Clette, D. Berghmans, P. Vanlommel, R.A.M. Van der Linden, A. Koeckelenbergh, L. Wauters, From the Wolf number to the International Sunspot Index: 25 years of SIDC. Adv. Space Res. 40, 919 (2007).  https://doi.org/10.1016/j.asr.2006.12.045 ADSCrossRefGoogle Scholar
  21. F. Clette, L. Svalgaard, J.M. Vaquero, E.W. Cliver, Revisiting the sunspot number: a 400-year perspective on the solar cycle. Space Sci. Rev. 186, 35 (2014).  https://doi.org/10.1007/s11214-014-0074-2 ADSCrossRefGoogle Scholar
  22. F. Clette, E.W. Cliver, L. Lefèvre, L. Svalgaard, J.M. Vaquero, Revision of the sunspot number(s). Space Weather 13, 529 (2015).  https://doi.org/10.1002/2015SW001264 ADSCrossRefGoogle Scholar
  23. F. Clette, E.W. Cliver, L. Lefèvre, L. Svalgaard, J.M. Vaquero, J.W. Leibacher, Preface to topical issue: recalibration of the sunspot number. Sol. Phys. 291, 2479 (2016a).  https://doi.org/10.1007/s11207-016-1017-8 ADSCrossRefGoogle Scholar
  24. F. Clette, L. Lefèvre, M. Cagnotti, S. Cortesi, A. Bulling, The revised Brussels–Locarno sunspot number (1981–2015). Sol. Phys. 291, 2733 (2016b).  https://doi.org/10.1007/s11207-016-0875-4 ADSCrossRefGoogle Scholar
  25. E.W. Cliver, Comparison of new and old sunspot number time series. Sol. Phys. 291, 2891 (2016).  https://doi.org/10.1007/s11207-016-0929-7 ADSCrossRefGoogle Scholar
  26. E.W. Cliver, Sunspot number recalibration: the ∼1840–1920 anomaly in the observer normalization factors of the group sunspot number. J. Space Weather Space Clim. 7, A12 (2017).  https://doi.org/10.1051/swsc/2017010 ADSCrossRefGoogle Scholar
  27. E.W. Cliver, A.G. Ling, Secular change in geomagnetic indices and the solar open magnetic flux during the first half of the twentieth century. J. Geophys. Res. 107, 1303 (2002).  https://doi.org/10.1029/2001JA000505 CrossRefGoogle Scholar
  28. E.W. Cliver, A.G. Ling, The floor in the solar wind magnetic field revisited. Sol. Phys. 274, 285 (2011).  https://doi.org/10.1007/s11207-010-9657-6 ADSCrossRefGoogle Scholar
  29. E.W. Cliver, A.G. Ling, The discontinuity circa 1885 in the group sunspot number. Sol. Phys. 291, 2763 (2016).  https://doi.org/10.1007/s11207-015-0841-6 ADSCrossRefGoogle Scholar
  30. E. Cliver, L. van Driel-Gesztelyi, Solar physics memoir series reinstituted. Sol. Phys. 267, 233 (2010).  https://doi.org/10.1007/s11207-010-9667-4 ADSCrossRefGoogle Scholar
  31. E.W. Cliver, R. von Steiger, Minimal magnetic states of the Sun and the solar wind: implications for the origin of the slow solar wind. Space Sci. Rev. 210, 227 (2017).  https://doi.org/10.1007/s11214-015-0224-1 ADSCrossRefGoogle Scholar
  32. E.W. Cliver, F. Clette, L. Svalgaard, Recalibrating the sunspot number (SSN): the SSN workshops. Cent. Eur. Astrophys. Bull. 37, 401 (2013a) ADSGoogle Scholar
  33. E.W. Cliver, I.G. Richardson, A.G. Ling, Solar drivers of 11-yr and long-term cosmic ray modulation. Space Sci. Rev. 176, 3 (2013b).  https://doi.org/10.1007/s11214-011-9746-3 ADSCrossRefGoogle Scholar
  34. E.W. Cliver, F. Clette, L. Svalgaard, J.M. Vaquero, Recalibrating the sunspot number (SN): the 3rd and 4th SN workshops. Cent. Eur. Astrophys. Bull. 39, 1 (2015) ADSGoogle Scholar
  35. M.A. Clilverd, E. Clarke, T. Ulich, J. Linthe, H. Rishbeth, Reconstructing the long-term aa index. J. Geophys. Res. 110, A07205 (2005).  https://doi.org/10.1029/2004JA010762 ADSCrossRefGoogle Scholar
  36. J.B.J. Delambre, Astronomie Théorique et Pratique, vol. 3 (1814), p. 20 Google Scholar
  37. T. Dudok de Wit, L. Lefèvre, F. Clette, Uncertainties in the sunspot numbers: estimation and implications. Sol. Phys. 291, 2709 (2016).  https://doi.org/10.1007/s11207-016-0970-6 ADSCrossRefGoogle Scholar
  38. E.H. Erwin, H.E. Coffey, W.F. Denig, D.M. Willis, R. Henwood, M.N. Wild, The Greenwich photo-heliographic results (1874–1976): initial corrections to the printed publications. Sol. Phys. 288, 157 (2013).  https://doi.org/10.1007/s11207-013-0310-z ADSCrossRefGoogle Scholar
  39. J.A. Eddy, The Maunder Minimum. Science 192, 1189 (1976).  https://doi.org/10.1126/science.192.4245.1189 ADSCrossRefGoogle Scholar
  40. J. Feynman, N.U. Crooker, The solar wind at the turn of the century. Nature 275, 626 (1978).  https://doi.org/10.1038/275626a0 ADSCrossRefGoogle Scholar
  41. J. Feynman, A. Ruzmaikin, The Sun’s strange behavior: Maunder Minimum or Gleissberg cycle? Sol. Phys. 272, 351 (2011).  https://doi.org/10.1007/s11207-011-9828-0 ADSCrossRefGoogle Scholar
  42. P.V. Foukal, Solar Astrophysics (Wiley-VCH, Weinheim, 2004), p. 365 CrossRefGoogle Scholar
  43. T.K. Friedli, The construction of the Wolf series from 1749 to 1980. Solar Phys. (submitted, 2016) Google Scholar
  44. A. Gautier, Relation entre les taches du Soleil et les phénomènes magnétiques. Arch. Sci. 21, 194 (1852) Google Scholar
  45. L.J. Gleeson, W.I. Axford, Solar modulation of galactic cosmic rays. Astrophys. J. 154, 1011 (1968).  https://doi.org/10.1086/149822 ADSCrossRefGoogle Scholar
  46. W. Gleissberg, A long-periodic fluctuation of the sun-spot numbers. Observatory 62, 158 (1939) ADSGoogle Scholar
  47. D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 12, 4 (2015).  https://doi.org/10.1007/lrsp-2015-4 ADSCrossRefGoogle Scholar
  48. K. Herbst, A. Kopp, B. Heber, F. Steinhilber, H. Fichtner, K. Scherer, D. Matthiä, On the importance of the local interstellar spectrum for the solar modulation parameter. J. Geophys. Res. 115, D00I20 (2010).  https://doi.org/10.1029/2009JD012557 ADSCrossRefGoogle Scholar
  49. K. Herbst, R. Muscheler, B. Heber, The new local interstellar spectra and their influence on the production rates of the cosmogenic radionuclides 10Be and 14C. J. Geophys. Res. 122, 23 (2017).  https://doi.org/10.1002/2016JA023207 CrossRefGoogle Scholar
  50. R. Hodgson, On a curious appearance seen in the Sun. Mon. Not. R. Astron. Soc. 20, 15 (1859).  https://doi.org/10.1093/mnras/20.1.15 ADSCrossRefGoogle Scholar
  51. D.V. Hoyt, K.H. Schatten, Group sunspot numbers: a new solar activity reconstruction. Sol. Phys. 179, 189 (1998a).  https://doi.org/10.1023/A:1005007527816 ADSCrossRefGoogle Scholar
  52. D.V. Hoyt, K.H. Schatten, Group sunspot numbers: a new solar activity reconstruction. Sol. Phys. 181, 491 (1998b).  https://doi.org/10.1023/A:1005056326158 ADSCrossRefGoogle Scholar
  53. D. Hoyt, K.H. Schatten, E. Nesme-Ribes, The one hundredth year of Rudolf Wolf’s death: do we have the correct reconstruction of solar activity? Geophys. Res. Lett. 21, 2067 (1994).  https://doi.org/10.1029/94GL01698 ADSCrossRefGoogle Scholar
  54. K. Hufbauer, Exploring the Sun: Solar Science Since Galileo (Johns Hopkins University Press, Baltimore, 1991), p. 46 Google Scholar
  55. M.J. Jarvis, Observed tidal variation in the lower thermosphere through the 20th century and the possible implication of ozone depletion. J. Geophys. Res. 110, A04303 (2005).  https://doi.org/10.1029/2004JA010921 ADSCrossRefGoogle Scholar
  56. G.A. Kovaltsov, I.G. Usoskin, A new 3D numerical model of cosmogenic nuclide 10Be production in the atmosphere. Earth Planet. Sci. Lett. 291, 182 (2010).  https://doi.org/10.1016/j.epsl.2010.01.011 ADSCrossRefGoogle Scholar
  57. J.-L. Le Mouël, F. Lopes, V. Courtillot, Identification of Gleissberg cycles and a rising trend in a 315-year-long series of sunspot numbers. Sol. Phys. 292, #43 (2017) ADSCrossRefGoogle Scholar
  58. R. Leussu, I.G. Usoskin, R. Arlt Rainer, K. Mursula, Inconsistency of the Wolf sunspot number series around 1848. Astron. Astrophys. 559, A28 (2013).  https://doi.org/10.1051/0004-6361/201322373 ADSCrossRefGoogle Scholar
  59. J.A. Linker, Z. Mikić, D.A. Biesecker, R.J. Forsyth, S.E. Gibson, A.J. Lazarus, A. Lecinski et al., Magnetohydrodynamic modeling of the solar corona during Whole Sun Month. J. Geophys. Res. 104, 9809 (1999).  https://doi.org/10.1029/1998JA900159 ADSCrossRefGoogle Scholar
  60. M. Lockwood, M. Owens, The accuracy of using the Ulysses result of the spatial invariance of the radial heliospheric field to compute the open solar flux. Astrophys. J. 701, 964 (2009).  https://doi.org/10.1088/0004-637X/701/2/964 ADSCrossRefGoogle Scholar
  61. M. Lockwood, M.J. Owens, Centennial changes in the heliospheric magnetic field and open solar flux: the consensus view from geomagnetic data and cosmogenic isotopes and its implications. J. Geophys. Res. 116, A04109 (2011).  https://doi.org/10.1029/2010JA016220 ADSGoogle Scholar
  62. M. Lockwood, M.J. Owens, Implications of the recent low solar minimum for the solar wind during the Maunder Minimum. Astrophys. J. Lett. 781, L7 (2014).  https://doi.org/10.1088/2041-8205/781/1/L7 ADSCrossRefGoogle Scholar
  63. M. Lockwood, R. Stamper, M.N. Wild, A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399, 437 (1999).  https://doi.org/10.1038/20867 ADSCrossRefGoogle Scholar
  64. M. Lockwood, R.B. Forsyth, A. Balogh, D.J. Mcomas, Open solar flux estimates from near-Earth measurements of the interplanetary magnetic field: comparison of the first two perihelion passes of the Ulysses spacecraft. Ann. Geophys. 22, 1395 (2004).  https://doi.org/10.5194/angeo-22-1395-2004 ADSCrossRefGoogle Scholar
  65. M. Lockwood, A.P. Rouillard, I. Finch, R. Stamper, Comment on “the IDV index: its derivation and use in inferring long-term variations of the interplanetary magnetic field strength” by Leif Svalgaard and Edward W. Cliver. J. Geophys. Res. 111, A09109 (2006).  https://doi.org/10.1029/2006JA011640 ADSGoogle Scholar
  66. M. Lockwood, A.P. Rouillard, I.D. Finch, The rise and fall of open solar flux during the current grand solar maximum. Astrophys. J. 700, 937 (2009a).  https://doi.org/10.1088/0004-637X/700/2/937 ADSCrossRefGoogle Scholar
  67. M. Lockwood, M. Owens, A.P. Rouillard, Excess open solar magnetic flux from satellite data: 2. A survey of kinematic effects. J. Geophys. Res. 114, A11104 (2009b).  https://doi.org/10.1029/2009JA014450 ADSCrossRefGoogle Scholar
  68. M. Lockwood, L. Barnard, H. Nevanlinna, M.J. Owens, R.G. Harrison, A.P. Rouillard, C.J. Davis, Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr—Part 1: A new geomagnetic data composite. Ann. Geophys. 31, 1957 (2013a).  https://doi.org/10.5194/angeo-31-1957-2013 ADSCrossRefGoogle Scholar
  69. M. Lockwood, L. Barnard, H. Nevanlinna, M.J. Owens, R.G. Harrison, A.P. Rouillard, C.J. Davis, Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr—Part 2: A new reconstruction of the interplanetary magnetic field. Ann. Geophys. 31, 1979 (2013b).  https://doi.org/10.5194/angeo-31-1979-2013 ADSCrossRefGoogle Scholar
  70. M. Lockwood, H. Nevanlinna, M. Vokhmyanin, D. Ponyavin, S. Sokolov, L. Barnard, M. Owens, R. Harrison, A. Rouillard, C. Scott, Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr—Part 3: Improved representation of solar cycle 11. Ann. Geophys. 32, 367 (2014a).  https://doi.org/10.5194/angeo-32-367-2014 ADSCrossRefGoogle Scholar
  71. M. Lockwood, H. Nevanlinna, L. Barnard, M.J. Owens, R.G. Harrison, A.P. Rouillard, C.J. Scott, Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr—Part 4: Near-Earth solar wind speed, IMF, and open solar flux. Ann. Geophys. 32, 383 (2014b).  https://doi.org/10.5194/angeo-32-383-2014 ADSCrossRefGoogle Scholar
  72. M. Lockwood, M.J. Owens, L. Barnard, Centennial variations in sunspot number, open solar flux, and streamer belt width: 1. Correction of the sunspot number record since 1874. J. Geophys. Res. 119, 5172 (2014c).  https://doi.org/10.1002/2014JA019970 CrossRefGoogle Scholar
  73. M. Lockwood, M.J. Owens, L. Barnard, Centennial variations in sunspot number, open solar flux, and streamer belt width: 2. Comparison with the geomagnetic data. J. Geophys. Res. 119, 5183 (2014d).  https://doi.org/10.1002/2014JA019972 CrossRefGoogle Scholar
  74. M. Lockwood, C.J. Scott, M.J. Owens, L. Barnard, D.M. Willis, Tests of sunspot number sequences: 1. Using ionosonde data. Sol. Phys. 291, 2785 (2016a).  https://doi.org/10.1007/s11207-016-0855-8 ADSCrossRefGoogle Scholar
  75. M. Lockwood, M.J. Owens, L. Barnard, C.J. Scott, I.G. Usoskin, H. Nevanlinna, Tests of sunspot number sequences: 2. Using geomagnetic and auroral data. Sol. Phys. 291, 2811 (2016b).  https://doi.org/10.1007/s11207-016-0913-2 ADSCrossRefGoogle Scholar
  76. M. Lockwood, M.J. Owens, L. Barnard, I.G. Usoskin, Tests of sunspot number sequences: 3. Effects of regression procedures on the calibration of historic sunspot data. Sol. Phys. 291, 2829 (2016c).  https://doi.org/10.1007/s11207-015-0829-2 ADSCrossRefGoogle Scholar
  77. M. Lockwood, M.J. Owens, L. Barnard, Tests of sunspot number sequences: 4. Discontinuities around 1946 in various sunspot number and sunspot-group-number reconstructions. Sol. Phys. 291, 2843 (2016d).  https://doi.org/10.1007/s11207-016-0967-1 ADSCrossRefGoogle Scholar
  78. M. Lockwood, M.J. Owens, L. Barnard, I.G. Usoskin, An assessment of sunspot number data composites over 1845–2014. Astrophys. J. 824, 54 (2016e).  https://doi.org/10.3847/0004-637X/824/1/54 ADSCrossRefGoogle Scholar
  79. M. Lockwood, M. Owens, L.A. Barnard, C.J. Scott, C.E. Watt, Space Climate and Space Weather over the past 400 years: 1. The power input to the magnetosphere. J. Space Weather Space Clim. 7, A25 (2017).  https://doi.org/10.1051/swsc/2017019 ADSCrossRefGoogle Scholar
  80. E. Loomis, Comparison of the mean daily range of the magnetic declination and the number of auroras observed each year, with the extent of black spots on the Sun. Am. J. Sci. Arts 105, 245 (1873) ADSCrossRefGoogle Scholar
  81. J.J. Love, V.C. Tsai, J.L. Gannon, Averaging and sampling for magnetic-observatory hourly data. Ann. Geophys. 28, 2079 (2010).  https://doi.org/10.5194/angeo-28-2079-2010 ADSCrossRefGoogle Scholar
  82. S. Macmillan, E. Clarke, Resolving issues concerning Eskdalemuir geomagnetic hourly values. Ann. Geophys. 29, 283 (2011).  https://doi.org/10.5194/angeo-29-283-2011 ADSCrossRefGoogle Scholar
  83. D. Martini, K. Mursula, Correcting the geomagnetic IHV index of the Eskdalemuir observatory. Ann. Geophys. 24, 3411 (2006).  https://doi.org/10.5194/angeo-24-3411-2006 ADSCrossRefGoogle Scholar
  84. E.W. Maunder, Professor Spoerer’s researches on sun-spots. Mon. Not. R. Astron. Soc. 50, 251 (1890) ADSCrossRefGoogle Scholar
  85. E.W. Maunder, A prolonged sunspot minimum. Knowledge 17, 173 (1894) Google Scholar
  86. E.W. Maunder, The prolonged sunspot minimum. J. Br. Astron. Assoc. 32, 140 (1922) ADSGoogle Scholar
  87. P.-N. Mayaud, The aa indices: a 100-year series characterizing the magnetic activity. J. Geophys. Res. 77, 6870 (1972).  https://doi.org/10.1029/JA077i034p06870 ADSCrossRefGoogle Scholar
  88. P.-N. Mayaud, Derivation, Meaning, and Use of Geomagnetic Indices (American Geophysical Union, Washington, 1980) CrossRefGoogle Scholar
  89. K.G. McCracken, Heliomagnetic field near Earth, 1428–2005. J. Geophys. Res. 112, A09106 (2007).  https://doi.org/10.1029/2006JA012119 ADSGoogle Scholar
  90. K.G. McCracken, J. Beer, Comparison of the extended solar minimum of 2006–2009 with the Spoerer, Maunder, and Dalton Grand Minima in solar activity in the past. J. Geophys. Res. 119, 2379 (2014).  https://doi.org/10.1002/2013JA019504 CrossRefGoogle Scholar
  91. K.G. McCracken, J. Beer, The annual cosmic-radiation intensities 1391–2014; the annual heliospheric magnetic field strengths 1391–1983, and identification of solar cosmic-ray events in the cosmogenic record 1800–1983. Sol. Phys. 290, 3051 (2015).  https://doi.org/10.1007/s11207-015-0777-x ADSCrossRefGoogle Scholar
  92. K. Mursula, D. Martini, A. Karinen, Did open solar magnetic field increase during the last 100 years? A reanalysis of geomagnetic activity. Sol. Phys. 224(1–2), 85 (2004).  https://doi.org/10.1007/s11207-005-4981-y ADSCrossRefGoogle Scholar
  93. R. Muscheler, F. Joos, S.A. Müller, I. Snowball, How unusual is today’s solar activity? Nature 436, E3 (2005).  https://doi.org/10.1038/nature04045 ADSCrossRefGoogle Scholar
  94. R. Muscheler, F. Adolphi, K. Herbst, A. Nilsson, The revised sunspot record in comparison to cosmogenic radionuclide-based solar activity reconstructions. Sol. Phys. 291, 3025 (2016).  https://doi.org/10.1007/s11207-016-0969-z ADSCrossRefGoogle Scholar
  95. M. Neugebauer, C.W. Snyder, Solar plasma experiment. Science 138, 1095 (1962).  https://doi.org/10.1126/science.138.3545.1095-a ADSCrossRefGoogle Scholar
  96. M.J. Owens, M. Lockwood, Cyclic loss of open solar flux since 1868: the link to heliospheric current sheet tilt and implications for the Maunder Minimum. J. Geophys. Res. 117, A04102 (2012).  https://doi.org/10.1029/2011JA017193 ADSCrossRefGoogle Scholar
  97. M.J. Owens, E. Cliver, K.G. McCracken, J. Beer, L. Barnard, M. Lockwood, A. Rouillard et al., Near-Earth heliospheric magnetic field intensity since 1750: 1. Sunspot and geomagnetic reconstructions. J. Geophys. Res. 121, 6048 (2016a).  https://doi.org/10.1002/2016JA022529 CrossRefGoogle Scholar
  98. M.J. Owens, E. Cliver, K.G. McCracken, J. Beer, L. Barnard, M. Lockwood, A. Rouillard et al., Near-Earth heliospheric magnetic field intensity since 1750: 2. Cosmogenic radionuclide reconstructions. J. Geophys. Res. 121, 6064 (2016b).  https://doi.org/10.1002/2016JA022550 CrossRefGoogle Scholar
  99. M.J. Owens, M. Lockwood, P. Riley, Global solar wind variations over the last four centuries. Nature Sci. Rep. 7, 41548 (2017) ADSCrossRefGoogle Scholar
  100. M.S. Potgieter, E.E. Vos, M. Boezio, N. De Simone, V. Di Felice, V. Formato, Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009. Sol. Phys. 289, 391–406 (2014).  https://doi.org/10.1007/s11207-013-0324-6 ADSCrossRefGoogle Scholar
  101. F. Rahmanifard, N.A. Schwadron, C.W. Smith, K.G. McCracken, K.A. Duderstadt, N. Lugaz, M.L. Goelzer, Inferring the heliospheric magnetic field back through Maunder Minimum. Astrophys. J. 837, 165 (2017).  https://doi.org/10.3847/1538-4357/aa6191 ADSCrossRefGoogle Scholar
  102. J.C. Ribes, E. Nesme-Ribes, The solar sunspot cycle in the Maunder Minimum AD1645 to AD1715. Astron. Astrophys. 276, 549 (1993) ADSGoogle Scholar
  103. P. Riley, R. Lionello, J.A. Linker, E. Cliver, A. Balogh, J. Beer, P. Charbonneau et al., Inferring the structure of the solar corona and inner heliosphere during the Maunder Minimum using global thermodynamic magnetohydrodynamic simulations. Astrophys. J. 802, 105 (2015).  https://doi.org/10.1088/0004-637X/802/2/105 ADSCrossRefGoogle Scholar
  104. A.P. Rouillard, M. Lockwood, I. Finch, Centennial changes in the solar wind speed and in the open solar flux. J. Geophys. Res. 112, A05103 (2007).  https://doi.org/10.1029/2006JA012130 ADSCrossRefGoogle Scholar
  105. C.T. Russell, On the possibility of deducing interplanetary and solar parameters from geomagnetic records. Sol. Phys. 42, 259 (1975).  https://doi.org/10.1007/BF00153301 ADSCrossRefGoogle Scholar
  106. E. Sabine, On periodical laws discoverable in the mean effects of the larger magnetic disturbances. Philos. Trans. R. Soc. Lond. 142, 103 (1852) CrossRefGoogle Scholar
  107. H.H. Sargent III, The 27-day recurrence index, in Solar wind–magnetosphere coupling, ed. by Y. Kamide, J.A. Slavin (Dordrecht, Boston, 1986), p. 143.  https://doi.org/10.1007/978-90-277-2303-1_11 CrossRefGoogle Scholar
  108. S.H. Schwabe, Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron. Nachr. 21, 233 (1844) ADSCrossRefGoogle Scholar
  109. E.J. Smith, A. Balogh, Ulysses observations of the radial magnetic field. Geophys. Res. Lett. 22, 3317 (1995).  https://doi.org/10.1029/95GL02826 ADSCrossRefGoogle Scholar
  110. C.W. Snyder, M. Neugebauer, U.R. Rao, The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. J. Geophys. Res. 68, 6361 (1963).  https://doi.org/10.1029/JZ068i024p06361 ADSCrossRefGoogle Scholar
  111. S.K. Solanki, M. Schüssler, M. Fligge, Evolution of the Sun’s large-scale magnetic field since the Maunder Minimum. Nature 408, 445 (2000).  https://doi.org/10.1038/35044027 ADSCrossRefGoogle Scholar
  112. S.K. Solanki, M. Schüssler, M. Fligge, Secular variation of the Sun’s magnetic flux. Astron. Astrophys. 383, 706 (2002).  https://doi.org/10.1051/0004-6361:20011790 ADSCrossRefGoogle Scholar
  113. S.K. Solanki, I.G. Usoskin, B. Kromer, M. Schüssler, J. Beer, Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084 (2004).  https://doi.org/10.1038/nature02995 ADSCrossRefGoogle Scholar
  114. S.K. Solanki, I.G. Usoskin, B. Kromer, M. Schüssler, J. Beer, Climate: how unusual is today’s solar activity? (reply). Nature 436, 4 (2005).  https://doi.org/10.1038/nature04046 CrossRefGoogle Scholar
  115. F.W.G. Spörer, On the periodicity of sunspots since the year 1618, especially with respect to the heliographic latitude of the same, and reference to a significant disturbance of this periodicity during a long period. Vierteljahrsschr. Astron. Ges. (Leipzig) 22, 323 (1887) Google Scholar
  116. F.W.G. Spörer, Sur les différences que présentent l’hémisphère sud du Soliel. Bull. Astron. 6, 60 (1889) Google Scholar
  117. F. Steinhilber, J.A. Abreu, J. Beer, Solar modulation during the Holocene. Astrophys. Space Sci. Trans. 4, 1 (2008).  https://doi.org/10.5194/astra-4-1-2008 ADSCrossRefGoogle Scholar
  118. B. Stewart, On the great magnetic disturbance which extended from August 28 to September 7, 1859, as recorded by photography at the Kew observatory. Philos. Trans. R. Soc. Lond. 151, 423 (1861) CrossRefGoogle Scholar
  119. F. Steinhilber, J.A. Abreu, J. Beer, K.G. McCracken, Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides. J. Geophys. Res. 115, A01104 (2010).  https://doi.org/10.1029/2009JA014193 ADSCrossRefGoogle Scholar
  120. F. Steinhilber, J.A. Abreu, J. Beer, I. Brunner, M. Christl, H. Fischer, U. Heikkila et al., 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. 109, 5967 (2012).  https://doi.org/10.1073/pnas.1118965109 ADSCrossRefGoogle Scholar
  121. J.O. Stenflo, Transition of the sunspot number from Zurich to Brussels in 1980: a personal perspective. Sol. Phys. 291, 2487 (2016).  https://doi.org/10.1007/s11207-015-0837-2 ADSCrossRefGoogle Scholar
  122. E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science 341, 150 (2013).  https://doi.org/10.1126/science.1236408 ADSCrossRefGoogle Scholar
  123. L. Svalgaard, Geomagnetic activity: dependence on solar wind parameters, in Coronal Holes and High Speed Wind Streams, ed. by J.B. Zirker (Colorado Associated University Press, Boulder, 1977), p. 371 Google Scholar
  124. L. Svalgaard, Updating the historical sunspot record, in Understanding a Peculiar Solar Minimum, ed. by S.R. Cranmer, J.T. Hoeksema, J.L. Kohl. ASP Conference Series, vol. 428 (Astron. Society Pacific, San Francisco, 2010), p. 297 Google Scholar
  125. L. Svalgaard, How well do we know the sunspot number? Comparative magnetic minima, characterizing quiet times in the Sun and stars, in Proc. IAU Symp., vol. 286, ed. by C.H. Mandrini, D.F. Webb (Cambridge University Press, Cambridge, 2012), p. 27 Google Scholar
  126. L. Svalgaard, Solar activity—past, present, future. J. Space Weather Space Clim. 3, A24 (2013).  https://doi.org/10.1051/swsc/2013046 ADSCrossRefGoogle Scholar
  127. L. Svalgaard, Correction of errors in scale values for magnetic elements for Helsinki. Ann. Geophys. 32, 633 (2014).  https://doi.org/10.5194/angeo-32-633-2014 ADSCrossRefGoogle Scholar
  128. L. Svalgaard, E.W. Cliver, The IDV index: its derivation and use in inferring long-term variations of the interplanetary magnetic field strength. J. Geophys. Res. 110, A12103 (2005).  https://doi.org/10.1029/2005JA011203 ADSCrossRefGoogle Scholar
  129. L. Svalgaard, E.W. Cliver, Reply to the comment by M. Lockwood et al. on “The IDV index: its derivation and use in inferring long-term variations of the interplanetary magnetic field”. J. Geophys. Res. 111, A09110 (2006).  https://doi.org/10.1029/2006JA011678 ADSCrossRefGoogle Scholar
  130. L. Svalgaard, E.W. Cliver, A floor in the solar wind magnetic field. Astrophys. J. Lett. 661, L203 (2007a).  https://doi.org/10.1086/518786 ADSCrossRefGoogle Scholar
  131. L. Svalgaard, E.W. Cliver, Interhourly variability index of geomagnetic activity and its use in deriving the long-term variation of solar wind speed. J. Geophys. Res. 112, A10111 (2007b).  https://doi.org/10.1029/2007JA012437 ADSCrossRefGoogle Scholar
  132. L. Svalgaard, E.W. Cliver, Heliospheric magnetic field 1835–2009. J. Geophys. Res. 115, A09111 (2010).  https://doi.org/10.1029/2009JA015069 ADSCrossRefGoogle Scholar
  133. L. Svalgaard, K.H. Schatten, Reconstruction of the sunspot group number: the backbone method. Sol. Phys. 291, 2653 (2016).  https://doi.org/10.1007/s11207-015-0815-8 ADSCrossRefGoogle Scholar
  134. L. Svalgaard, K.H. Schatten, On the sunspot group number reconstruction: the Backbone method revisited (2017). arXiv:1704.07061
  135. L. Svalgaard, E.W. Cliver, P. Le Sager, Determination of interplanetary magnetic field strength, solar wind speed and EUV irradiance, 1890–2003, in Solar Variability as an Input to the Earth’s Environment, ESA SP-535, ed. by A. Wilson (ESA Publications Division, Noordwijk, 2003), p. 15 Google Scholar
  136. L. Svalgaard, E.W. Cliver, P. Le Sager, IHV: a new long-term geomagnetic index. Adv. Space Res. 34, 436 (2004).  https://doi.org/10.1016/j.asr.2003.01.029 ADSCrossRefGoogle Scholar
  137. L. Svalgaard, E.W. Cliver, Y. Kamide, Sunspot cycle 24: smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104 (2005).  https://doi.org/10.1029/2004GL021664 ADSCrossRefGoogle Scholar
  138. L. Svalgaard, M. Cagnotti, S. Cortesi, The effect of sunspot weighting. Sol. Phys. 292, #34 (2017).  https://doi.org/10.1007/s11207-016-1024-9 ADSCrossRefGoogle Scholar
  139. I.G. Usoskin, A history of solar activity over millennia. Living Rev. Sol. Phys. 14, 3 (2017).  https://doi.org/10.1007/s41116-017-0006-9 ADSCrossRefGoogle Scholar
  140. I.G. Usoskin, K. Mursula, S.K. Solanki, M. Schüssler, G.A. Kovaltsov, A physical reconstruction of cosmic ray intensity since 1610. J. Geophys. Res. 107, 1374 (2002).  https://doi.org/10.1029/2002JA009343 CrossRefGoogle Scholar
  141. I.G. Usoskin, K. Alanko-Huotari, G.A. Kovaltsov, K. Mursula, Heliospheric modulation of cosmic rays: monthly reconstruction for 1951–2004. J. Geophys. Res. 110(A12), A12108 (2005).  https://doi.org/10.1029/2005JA011250 ADSCrossRefGoogle Scholar
  142. I.G. Usoskin, S.K. Solanki, G.A. Kovaltsov, Grand minima and maxima of solar activity: new observational constraints. Astron. Astrophys. 471, 301 (2007).  https://doi.org/10.1051/0004-6361:20077704 ADSCrossRefGoogle Scholar
  143. I.G. Usoskin, G.A. Bazilevskaya, G.A. Kovaltsov, Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J. Geophys. Res. 116(A2), A02104 (2011).  https://doi.org/10.1029/2010JA016105 ADSCrossRefGoogle Scholar
  144. I.G. Usoskin, R. Arlt, E. Asvestari, E. Hawkins, M. Käpylä, G.A. Kovaltsov, N. Krivova et al., The Maunder minimum (1645–1715) was indeed a grand minimum: a reassessment of multiple datasets. Astron. Astrophys. 581, A95 (2015).  https://doi.org/10.1051/0004-6361/201526652 CrossRefGoogle Scholar
  145. I.G. Usoskin, G.A. Kovaltsov, M. Lockwood, K. Mursula, M. Owens, S.K. Solanki, A new calibrated sunspot group series since 1749: statistics of active day fractions. Sol. Phys. 291, 2685 (2016).  https://doi.org/10.1007/s11207-015-0838-1 ADSCrossRefGoogle Scholar
  146. J.M. Vaquero, R.M. Trigo, Redefining the limit dates for the Maunder Minimum. New Astron. 34, 120 (2015).  https://doi.org/10.1016/j.newast.2014.06.002 ADSCrossRefGoogle Scholar
  147. J.M. Vaquero, L. Svalgaard, V.M.S. Carrasco, F. Clette, L. Lefèvre, M.C. Gallego, R. Arlt et al., A revised collection of sunspot group numbers. Sol. Phys. 291, 3061 (2016).  https://doi.org/10.1007/s11207-016-0982-2 ADSCrossRefGoogle Scholar
  148. Y.-M. Wang, N.R. Sheeley Jr., On the fluctuating component of the Sun’s large-scale magnetic field. Astrophys. J. 590, 1111 (2003).  https://doi.org/10.1086/375026 ADSCrossRefGoogle Scholar
  149. Y.-M. Wang, J.L. Lean, N.R. Sheeley Jr., Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J. 625, 522 (2005).  https://doi.org/10.1086/429689 ADSCrossRefGoogle Scholar
  150. W.R. Webber, F.B. McDonald, Recent Voyager 1 data indicate that on 25 August 2012 at a distance of 121.7 AU from the Sun, sudden and unprecedented intensity changes were observed in anomalous and galactic cosmic rays. Geophys. Res. Lett. 40, 1665–1668 (2013).  https://doi.org/10.1002/grl.50383 ADSCrossRefGoogle Scholar
  151. T. Willamo, I.G. Usoskin, G.A. Kovaltsov, Updated sunspot group number reconstruction for 1749–1996 using the active day fraction method. Astron. Astrophys. 601, A109 (2017).  https://doi.org/10.1051/0004-6361/201629839 ADSCrossRefGoogle Scholar
  152. D.M. Willis, H.E. Coffey, R. Henwood, E.H. Erwin, D.V. Hoyt, M.N. Wild, W.F. Denig, The Greenwich photo-heliographic results (1874–1976): summary of the observations, applications, datasets, definitions and errors. Sol. Phys. 288, 117 (2013a).  https://doi.org/10.1007/s11207-013-0311-y ADSCrossRefGoogle Scholar
  153. D.M. Willis, R. Henwood, M.N. Wild, H.E. Coffey, W.F. Denig, E.H. Erwin, D.V. Hoyt, The Greenwich photo-heliographic results (1874–1976): procedures for checking and correcting the sunspot digital datasets. Sol. Phys. 288, 141 (2013b).  https://doi.org/10.1007/s11207-013-0312-x ADSCrossRefGoogle Scholar
  154. D.M. Willis, M.N. Wild, J.S. Warburton, Re-examination of the daily number of sunspot groups for the royal observatory, Greenwich (1874–1885). Sol. Phys. 291, 2519 (2016a).  https://doi.org/10.1007/s11207-016-0856-7 ADSCrossRefGoogle Scholar
  155. D.M. Willis, M.N. Wild, G.M. Appleby, L.T. Macdonald, The Greenwich photo-heliographic results (1874–1885): observing telescopes, photographic processes and solar images. Sol. Phys. 291, 2553 (2016b).  https://doi.org/10.1007/s11207-016-0894-1 ADSCrossRefGoogle Scholar
  156. R. Wolf, Sonnenflecken Beobachtungen in der zweiten Hälfte des Jahres 1850. Mitt. Nat.forsch. Ges. Bern 207, 89 (1851) Google Scholar
  157. R. Wolf, Sonnenflecken – Beobachtungen in der ersten Hälfte des Jahres 1852; Entdeckung des Zusammen-hanges zwischen den Declinationsvariationen der Magnetnadel und den Sonnenflecken. Mitt. Nat.forsch. Ges. Bern 224, 179 (1852a) Google Scholar
  158. R. Wolf, Liaison entre les taches du Soleil et les variations en declinaison de l’aiguille aimantée. Compt. Rend. 35, 364 (1852b) Google Scholar
  159. R. Wolf, Beobachtungen der Sonnenflecken in den Jahren 1849–1855. Astron. Mitteil. Eidgn. Sternw. Zür. 1, 3 (1856) Google Scholar
  160. A. Wolfer, Die Wolf’schen Tafeln der Sonnenflecken – Relativzahlen von 1749 bis zur Gegenwart, und der Maximums- und Minimumsepochen von 1610–1894, neu herausgegeben mit Berichtigungen und Ergänzungen. Astron. Mitt. Zür. 47(93), 80 (1902) Google Scholar
  161. H. Zirin, Astrophysics of the Sun (Cambridge University Press, New York, 1988), p. 303 Google Scholar
  162. N.V. Zolotova, D.I. Ponyavin, The Maunder minimum is not as grand as it seemed to be. Astrophys. J. 800, 42 (2015).  https://doi.org/10.1088/0004-637X/800/1/42 ADSCrossRefGoogle Scholar
  163. N.V. Zolotova, D.I. Ponyavin, How deep was the Maunder minimum? Sol. Phys. 291, 2869 (2016).  https://doi.org/10.1007/s11207-016-0908-z ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Solar ObservatoryBoulderUSA
  2. 2.Christian-Albrechts-Universität zu KielKielGermany

Personalised recommendations