Skip to main content
Log in

Reconstructing Highly-twisted Magnetic Fields

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We investigate the ability of a nonlinear force-free code to calculate highly-twisted magnetic field configurations using the Titov and Démoulin (Astron. Astrophys. 351:707, 1999) equilibrium field as a test case. The code calculates a force-free field using boundary conditions on the normal component of the field in the lower boundary, and the normal component of the current density over one polarity of the field in the lower boundary. The code can also use the current density over both polarities of the field in the lower boundary as a boundary condition. We investigate the accuracy of the reconstructions with increasing flux-rope surface twist number \(N_{\text{t}}\), achieved by decreasing the sub-surface line current in the model. We find that the code can approximately reconstruct the Titov–Démoulin field for surface twist numbers up to \(N_{\text{t}} \approx 8.8\). This includes configurations with bald patches. We investigate the ability to recover bald patches, and more generally identify the limitations of our method for highly-twisted fields. The results have implications for our ability to reconstruct coronal magnetic fields from observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Amari, T., Aly, J.-J.: 2010, Observational constraints on well-posed reconstruction methods and the optimization-Grad–Rubin method. Astron. Astrophys. 522, A52. DOI. ADS.

    Article  ADS  Google Scholar 

  • Amari, T., Boulmezaoud, T.Z., Aly, J.J.: 2006, Well posed reconstruction of the solar coronal magnetic field. Astron. Astrophys. 446(2), 691. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Amari, T., Boulmezaoud, T., Mikic, Z.: 1999, An iterative method for the reconstructionbreak of the solar coronal magnetic field. I. Method for regular solutions. Astron. Astrophys. 350, 1051. ADS.

    ADS  Google Scholar 

  • Bungey, T.N., Titov, V.S., Priest, E.R.: 1996, Basic topological elements of coronal magnetic fields. Astron. Astrophys. 308, 233. ADS.

    ADS  Google Scholar 

  • Démoulin, P.: 2006, Extending the concept of separatrices to qsls for magnetic reconnection. Adv. Space Res. 37(7), 1269. DOI. ADS.

    Article  ADS  Google Scholar 

  • DeRosa, M.L., Schrijver, C.J., Barnes, G., Leka, K., Lites, B.W., Aschwanden, M.J., Amari, T., Canou, A., McTiernan, J.M., Régnier, S., et al.: 2009, A critical assessment of nonlinear force-free field modeling of the solar corona for active region 10953. Astrophys. J. 696(2), 1780. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grad, H., Rubin, H.: 1958, Hydromagnetic equilibria and force-free fields. J. Nucl. Energy 7(3-4), 284.

    Google Scholar 

  • Guo, Y., Xia, C., Keppens, R.: 2016, Magneto-frictional modeling of coronal nonlinear force-free fields. II. Application to observations. Astrophys. J. 828(2), 83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hood, A.W., Priest, E.: 1979, Kink instability of solar coronal loops as the cause of solar flares. Solar Phys. 64(2), 303. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jiang, C.-W., Feng, X.-S.: 2016, Testing a solar coronal magnetic field extrapolation code with the Titov–Démoulin magnetic flux rope model. Res. Astron. Astrophys. 16(1), 015. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lee, H., Magara, T.: 2018, MHD simulation for investigating the dynamic state transition responsible for a solar eruption in active region 12158. Astrophys. J. 859(2), 132. DOI. ADS.

    Article  ADS  Google Scholar 

  • Low, B., Lou, Y.: 1990, Modeling solar force-free magnetic fields. Astrophys. J. 352, 343. DOI. ADS.

    Article  ADS  Google Scholar 

  • Metcalf, T.R., DeRosa, M.L., Schrijver, C.J., Barnes, G., van Ballegooijen, A.A., Wiegelmann, T., Wheatland, M.S., Valori, G., McTtiernan, J.M.: 2008, Nonlinear force-free modeling of coronal magnetic fields. II. Modeling a filament arcade and simulated chromospheric and photospheric vector fields. Solar Phys. 247(2), 269. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Derosa, M.L., Metcalf, T.R., Liu, Y., Mctiernan, J., Régnier, S., Valori, G., Wheatland, M.S., Wiegelmann, T.: 2006, Nonlinear force-free modeling of coronal magnetic fields part I: A quantitative comparison of methods. Solar Phys. 235(1–2), 161. DOI. ADS.

    Article  ADS  Google Scholar 

  • Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707. ADS.

    ADS  Google Scholar 

  • Titov, V., Priest, E., Demoulin, P.: 1993, Conditions for the appearance of “bald patches” at the solar surface. Astron. Astrophys. 276, 564. ADS.

    ADS  Google Scholar 

  • Török, T., Kliem, B., Titov, V.: 2004, Ideal kink instability of a magnetic loop equilibrium. Astron. Astrophys. 413(3), L27. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Valori, G., Kliem, B., Török, T., Titov, V.S.: 2010, Testing magnetofrictional extrapolation with the Titov–Démoulin model of solar active regions. Astron. Astrophys. 519, A44. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vemareddy, P., Cheng, X., Ravindra, B.: 2016, Sunspot rotation as a driver of major solar eruptions in the noaa active region 12158. Astrophys. J. 829(1), 24. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wheatland, M.S.: 2007, Calculating and testing nonlinear force-free fields. Solar Phys. 245(2), 251. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wheatland, M., Régnier, S.: 2009, A self-consistent nonlinear force-free solution for a solar active region magnetic field. Astrophys. J. Lett. 700(2), L88. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, An optimization approach to reconstructing force-free fields. Astrophys. J. 540(2), 1150. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Inhester, B.: 2010, How to deal with measurement errors and lacking data in nonlinear force-free coronal magnetic field modelling? Astron. Astrophys. 516, A107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Inhester, B., Kliem, B., Valori, G., Neukirch, T.: 2006, Testing non-linear force-free coronal magnetic field extrapolations with the Titov-Démoulin equilibrium. Astron. Astrophys. 453(2), 737. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Thalmann, J.K., Inhester, B., Tadesse, T., Sun, X., Hoeksema, J.T.: 2012, How should one optimize nonlinear force-free coronal magnetic field extrapolations from SDO/HMI vector magnetograms? Solar Phys. 281(1), 37. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, J., Gilchrist, S.A., Aulanier, G., Schmieder, B., Pariat, E., Li, H.: 2016, Hooked flare ribbons and flux-rope-related qsl footprints. Astrophys. J. 823(1), 62. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

VD is supported by the Australian Research Training Program. VD thanks Donald Melrose for helpful comments and suggestions on the manuscript. This work was funded in part by an Australian Research Council Discovery Project (DP180102408). We thank an anonymous referee for their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Demcsak.

Ethics declarations

Declaration of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demcsak, V.M., Wheatland, M.S., Mastrano, A. et al. Reconstructing Highly-twisted Magnetic Fields. Sol Phys 295, 116 (2020). https://doi.org/10.1007/s11207-020-01681-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01681-5

Keywords

Navigation