Advertisement

Solar Physics

, Volume 275, Issue 1–2, pp 207–227 | Cite as

The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO)

  • P. H. Scherrer
  • J. Schou
  • R. I. Bush
  • A. G. Kosovichev
  • R. S. Bogart
  • J. T. Hoeksema
  • Y. Liu
  • T. L. DuvallJr.
  • J. Zhao
  • A. M. Title
  • C. J. Schrijver
  • T. D. Tarbell
  • S. Tomczyk
Open Access
THE SOLAR DYNAMICS OBSERVATORY

Abstract

The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances, links between the internal processes and dynamics of the corona and heliosphere, and precursors of solar disturbances for space-weather forecasts. A brief overview of the instrument, investigation objectives, and standard data products is presented.

Keywords

Solar Dynamics Observatory Helioseismology Instrumentation and data management Magnetic fields, photosphere 

References

  1. Bogart, R.S., Baldner, C., Basu, S., Haber, D.A., Rabello-Soares, M.C.: 2011a, HMI ring diagram analysis I. The processing pipeline. J. Phys. C 271(1), 012008. doi: 10.1088/1742-6596/271/1/012008. Google Scholar
  2. Bogart, R.S., Baldner, C., Basu, S., Haber, D.A., Rabello-Soares, M.C.: 2011b, HMI ring diagram analysis II. Data products. J. Phys. C 271(1), 012009. doi: 10.1088/1742-6596/271/1/012009. Google Scholar
  3. Borrero, J.M., Tomczyk, S., Kubo, M., Socas-Navarro, H., Schou, J., Couvidat, S., Bogart, R.: 2010, VFISV: Very fast inversion of the stokes vector for the helioseismic and magnetic imager. Solar Phys. doi: 10.1007/s11207-010-9515-6. Google Scholar
  4. Braun, D.C., Lindsey, C.: 2001, Seismic imaging of the far hemisphere of the Sun. Astrophys. J. Lett. 560, L189 – L192. doi: 10.1086/324323. ADSCrossRefGoogle Scholar
  5. Couvidat, S., Zhao, J., Birch, A.C., Kosovichev, A.G., Duvall, T.L., Parchevsky, K., Scherrer, P.H.: 2010, Implementation and comparison of acoustic travel-time measurement procedures for the solar dynamics observatory/helioseismic and magnetic imager time–distance helioseismology pipeline. Solar Phys. doi: 10.1007/s11207-010-9652-y. Google Scholar
  6. Couvidat, S., Schou, J., Shine, R.A., Bush, R.I., Miles, J.W., Scherrer, P.H., Rairden, R.L.: 2011, Wavelength dependence of the helioseismic and magnetic imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO). Solar Phys. doi: 10.1007/s11207-011-9723-8. Google Scholar
  7. Drobnes, E., Littleton, A., Pesnell, W.D., Buhr, S., Beck, K., Durscher, R., Hill, S., McCaffrey, M., McKenzie, E., Scherrer, D., Wolt, A.: 2011, The SDO education and outreach (E/PO) program: Changing perceptions one program as a time. Solar Phys. accepted. Google Scholar
  8. Duvall, T.L. Jr., Jefferies, S.M., Harvey, J.W., Pomerantz, M.A.: 1993, Time–distance helioseismology. Nature 362, 430 – 432. doi: 10.1038/362430a0. ADSCrossRefGoogle Scholar
  9. Duvall, T.L. Jr., Kosovichev, A.G., Scherrer, P.H., Bogart, R.S., Bush, R.I., de Forest, C., Hoeksema, J.T., Schou, J., Saba, J.L.R., Tarbell, T.D., Title, A.M., Wolfson, C.J., Milford, P.N.: 1997, Time–distance helioseismology with the MDI instrument: initial results. Solar Phys. 170, 63 – 73. ADSCrossRefGoogle Scholar
  10. Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Larsen, R.M., Hill, F.: 2002, Evolving submerged meridional circulation cells within the upper convection zone revealed by ring-diagram analysis. Astrophys. J. 570, 855 – 864. doi: 10.1086/339631. ADSCrossRefGoogle Scholar
  11. Hathaway, D., SDO SDT Panel: 2001, Solar Dynamics Observatory report of the science definition team. Technical report. Accessed 13 May 2011. http://www.nswp.gov/sdo/sdo_sdt_report.pdf.
  12. Howe, R.: 2008, Helioseismology and the solar cycle. Adv. Space Res. 41, 846 – 854. doi: 10.1016/j.asr.2006.12.033. ADSCrossRefGoogle Scholar
  13. Howe, R., Hill, F., Komm, R., Christensen-Dalsgaard, J., Larson, T.P., Schou, J., Thompson, M.J., Ulrich, R.: 2011, The torsional oscillation and the new solar cycle. J. Phys. C 271(1), 012074. doi: 10.1088/1742-6596/271/1/012074. Google Scholar
  14. Komm, R., Howe, R., Hill, F., González Hernández, I., Haber, D.: 2011, Solar-cycle variation of zonal and meridional flow. J. Phys. C 271(1), 012077. doi: 10.1088/1742-6596/271/1/012077. Google Scholar
  15. Kosovichev, A.G.: 1996, Tomographic imaging of the Sun’s interior. Astrophys. J. Lett. 461, L55 – L57. doi: 10.1086/309989. ADSCrossRefGoogle Scholar
  16. Kosovichev, A.G.: 2003, What helioseismology teaches us about the Sun. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment 535, ESA, Noordwijk, 795 – 806. Google Scholar
  17. Kosovichev, A.G.: 2011, Local helioseismology of sunspots: Current status and perspectives. Solar Phys., submitted. Google Scholar
  18. Kosovichev, A.G., HMI Science Team: 2004, HMI Science Plan. Accessed 13 May 2011. http://hmi.stanford.edu/doc/HMI-S014.pdf.
  19. Kosovichev, A.G., Duvall, T.L. Jr., Scherrer, P.H.: 2000, Time–distance inversion methods and results (Invited review). Solar Phys. 192, 159 – 176. ADSCrossRefGoogle Scholar
  20. Larson, T., Schou, J.: 2011, HMI global helioseismology data analysis pipeline. J. Phys. C 271(1), 012062. doi: 10.1088/1742-6596/271/1/012062. Google Scholar
  21. Leka, K.D., Barnes, G., Crouch, A.D., Metcalf, T.R., Gary, G.A., Jing, J., Liu, Y.: 2009, Resolving the 180o ambiguity in solar vector magnetic field data: Evaluating the effects of noise, spatial resolution, and method assumptions. Solar Phys. 260, 83 – 108. doi: 10.1007/s11207-009-9440-8. ADSCrossRefGoogle Scholar
  22. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2011, The atmospheric imaging assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. doi: 10.1007/s11207-011-9776-8. Google Scholar
  23. Linker, J.A., Mikic, Z.: 1997, Extending coronal models to Earth orbit. In: Crooker, N., Joselyn, J., Feynman, J. (eds.) Coronal Mass Ejections: Causes and Consequences, Geophys. Monogr. Ser. 99, AGU, Washington. Google Scholar
  24. Lites, B.W., Skumanich, A., Martinez Pillet, V.: 1998, Vector magnetic fields of emerging solar flux. I. Properties at the site of emergence. Astron. Astrophys. 333, 1053 – 1068. ADSGoogle Scholar
  25. Mason, G., LWS Panel: 2001, Living with a star science architecture team report to SECAS. Technical report. Accessed 13 May 2011. http://www.nswp.gov/lwsgeospace/SECAS/LWSSAT_SECASreport_30Aug01.pdf.
  26. Metcalf, T.R.: 1994, Resolving the 180-degree ambiguity in vector magnetic field measurements: The ‘minimum’ energy solution. Solar Phys. 155, 235 – 242. doi: 10.1007/BF00680593. ADSCrossRefGoogle Scholar
  27. Metcalf, T.R., Leka, K.D., Barnes, G., Lites, B.W., Georgoulis, M.K., Pevtsov, A.A., Balasubramaniam, K.S., Gary, G.A., Jing, J., Li, J., Liu, Y., Wang, H.N., Abramenko, V., Yurchyshyn, V., Moon, Y.-J.: 2006, An overview of existing algorithms for resolving the 180°ambiguity in vector magnetic fields: Quantitative tests with synthetic data. Solar Phys. 237, 267 – 296. doi: 10.1007/s11207-006-0170-x. ADSCrossRefGoogle Scholar
  28. Rajaguru, S.P., Wachter, R., Sankarasubramanian, K., Couvidat, S.: 2010, Local helioseismic and spectroscopic analyses of interactions between acoustic waves and a sunspot. Astrophys. J. Lett. 721, L86 – L91. doi: 10.1088/2041-8205/721/2/L86. ADSCrossRefGoogle Scholar
  29. Scherrer, P.H., HMI Team: 2002, Helioseismic and magnetic imager for Solar Dynamics Observatory. Accessed 13 May 2011. http://hmi.stanford.edu/doc/HMI-S001.pdf.
  30. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162, 129 – 188. doi: 10.1007/BF00733429. ADSCrossRefGoogle Scholar
  31. Schou, J., Antia, H.M., Basu, S., Bogart, R.S., Bush, R.I., Chitre, S.M., Christensen-Dalsgaard, J., di Mauro, M.P., Dziembowski, W.A., Eff-Darwich, A., Gough, D.O., Haber, D.A., Hoeksema, J.T., Howe, R., Korzennik, S.G., Kosovichev, A.G., Larsen, R.M., Pijpers, F.P., Scherrer, P.H., Sekii, T., Tarbell, T.D., Title, A.M., Thompson, M.J., Toomre, J.: 1998, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505, 390 – 417. doi: 10.1086/306146. ADSCrossRefGoogle Scholar
  32. Schou, J., Borrero, J.M., Norton, A.A., Tomczyk, S., Elmore, D., Card, G.L.: 2010, Polarization calibration of the helioseismic and magnetic imager (HMI) onboard the Solar Dynamics Observatory (SDO). Solar Phys. doi: 10.1007/s11207-010-9639-8. zbMATHGoogle Scholar
  33. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, H.T., Liu, T., Duvall, J.T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2011, The helioseismic and magnetic imager instrument design and ground calibration. Solar Phys. doi: 10.1007/s11207-011-9842-2. Google Scholar
  34. Schuck, P.W.: 2008, Tracking vector magnetograms with the magnetic induction equation. Astrophys. J. 683, 1134 – 1152. doi: 10.1086/589434. ADSCrossRefGoogle Scholar
  35. Siscoe, G., Schwenn, R.: 2006, CME disturbance forecasting. Space Sci. Rev. 123, 453 – 470. doi: 10.1007/s11214-006-9024-y. ADSCrossRefGoogle Scholar
  36. Title, A.M.: 1997, Solar mystery near solution with data from SOHO spacecraft, the Sun’s newly-discovered magnetic carpet may explain coronal heating. Accessed 13 May 2011. http://soi.stanford.edu/press/ssu11-97/.
  37. Title, A.M., Schrijver, C.J.: 1998, The Sun’s magnetic carpet. In: Donahue, R.A., Bookbinder, J.A. (eds.) Cool Stars, Stellar Systems, and the Sun 154, Astron. Soc. Pac., San Francisco, 345. Google Scholar
  38. van Driel-Gesztelyi, L., Culhane, J.L.: 2009, Magnetic flux emergence, activity, eruptions and magnetic clouds: Following magnetic field from the Sun to the heliosphere. Space Sci. Rev. 144, 351 – 381. doi: 10.1007/s11214-008-9461-x. ADSCrossRefGoogle Scholar
  39. Wachter, R., Schou, J., Rabello-Soares, M.C., Miles, J.W., Duvall, T.L., Bush, R.I.: 2011, Image quality of the helioseismic and magnetic imager (HMI) onboard the solar dynamics observatory (SDO). Solar Phys. doi: 10.1007/s11207-011-9709-6. Google Scholar
  40. Welsch, B.T., Abbett, W.P., De Rosa, M.L., Fisher, G.H., Georgoulis, M.K., Kusano, K., Longcope, D.W., Ravindra, B., Schuck, P.W.: 2007, Tests and comparisons of velocity-inversion techniques. Astrophys. J. 670, 1434 – 1452. doi: 10.1086/522422. ADSCrossRefGoogle Scholar
  41. Wiegelmann, T.: 2004, Optimization code with weighting function for the reconstruction of coronal magnetic fields. Solar Phys. 219, 87 – 108. doi: 10.1023/B:SOLA.0000021799.39465.36. ADSCrossRefGoogle Scholar
  42. Wiegelmann, T., Inhester, B., Sakurai, T.: 2006, Preprocessing of vector magnetograph data for a nonlinear force-free magnetic field reconstruction. Solar Phys. 233, 215 – 232. doi: 10.1007/s11207-006-2092-z. ADSCrossRefGoogle Scholar
  43. Wilcox, J.M., Hoeksema, J.T., Scherrer, P.H.: 1980, Origin of the warped heliospheric current sheet. Science 209, 603 – 605. doi: 10.1126/science.209.4456.603. ADSCrossRefGoogle Scholar
  44. Woods, T.N., Eparvier, F.G., Hock, R., Jones, A.R., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., Mariska, J., Warren, H., McMullin, D., Chamberlin, P., Berthiaume, G., Bailey, S., Fuller-Rowell, T., Sojka, J., Tobiska, W.K., Viereck, R.: 2010, Extreme ultraviolet variability experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of science objectives, instrument design, data products, and model developments. Solar Phys. doi: 10.1007/s11207-009-9487-6. Google Scholar
  45. Zhao, J., Kosovichev, A.G., Duvall, T.L. Jr.: 2001, Investigation of mass flows beneath a sunspot by time–distance helioseismology. Astrophys. J. 557, 384 – 388. doi: 10.1086/321491. ADSCrossRefGoogle Scholar
  46. Zhao, J., Hartlep, T., Kosovichev, A.G., Mansour, N.N.: 2009, Imaging the solar tachocline by time–distance helioseismology. Astrophys. J. 702, 1150 – 1156. doi: 10.1088/0004-637X/702/2/1150. ADSCrossRefGoogle Scholar
  47. Zhao, J., Couvidat, S., Bogart, R.S., Parchevsky, K.V., Birch, A.C., Duvall, T.L., Beck, J.G., Kosovichev, A.G., Scherrer, P.H.: 2011, Time–distance helioseismology data-analysis pipeline for helioseismic and magnetic imager onboard Solar Dynamics Observatory (SDO/HMI) and its initial results. Solar Phys. doi: 10.1007/s11207-011-9757-y. Google Scholar
  48. Zhao, X.P., Webb, D.F.: 2003, Source regions and storm effectiveness of frontside full halo coronal mass ejections. J. Geophys. Res. 108, 1234. doi: 10.1029/2002JA009606. CrossRefGoogle Scholar
  49. Zwaan, C.: 1987, Elements and patterns in the solar magnetic field. Annu. Rev. Astron. Astrophys. 25, 83 – 111. doi: 10.1146/annurev.aa.25.090187.000503. ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • P. H. Scherrer
    • 1
  • J. Schou
    • 1
  • R. I. Bush
    • 1
  • A. G. Kosovichev
    • 1
  • R. S. Bogart
    • 1
  • J. T. Hoeksema
    • 1
  • Y. Liu
    • 1
  • T. L. DuvallJr.
    • 2
  • J. Zhao
    • 1
  • A. M. Title
    • 3
  • C. J. Schrijver
    • 3
  • T. D. Tarbell
    • 3
  • S. Tomczyk
    • 4
  1. 1.W.W. Hansen Experimental Physics LaboratoryStanford UniversityStanfordUSA
  2. 2.Laboratory for Astronomy and Solar PhysicsNASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Lockheed Martin Solar and Astrophysics LaboratoryPalo AltoUSA
  4. 4.High Altitude ObservatoryNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations