Research on Chemical Intermediates

, Volume 46, Issue 1, pp 509–520 | Cite as

Regulation of visible-light-driven photocatalytic degradation of Rhodamine B on BiOBr via zeta potential

  • Chang-cun Tang
  • Yan-fen FangEmail author
  • Xin-qiang Cao
  • Hai-lin Tian
  • Ying-ping HuangEmail author


In this paper, bismuth oxybromide (BiOBr) photocatalysts were synthesized in the presence of tetrabutylammonium bromide (TBAB) at the different volume fractions of ethanol/water and named as BiOBr0, BiOBr20, BiOBr50, BiOBr80 and BiOBr100, respectively. The samples were characterized and applied to the degradation of Rhodamine B (RhB) under visible-light irradiation (λ ≥ 420 nm). The results indicated that both TBAB and ethanol significantly affected the crystal phase, morphology and surface charge distribution of BiOBr. The exposed (110) faces of BiOBr with Bi3+ sites contributed to its photocatalytic activity via the enhanced separation of electrons and photogenerated holes as well as the better photo-stability. BiOBr50 showed the optimal activity for the photodegradation of RhB. Superoxide radical (O2·−) as the dominant active species was responsible for the degradation of RhB.


BiOB Photocatalytic activity Zeta potential Ethanol 



This work was financially supported by the National Natural Science Foundation of China (21677086, 21577078), Hubei Innovation Group Project (2015CFA021), The 111 Project of Hubei Province (2018-19-1), China Postdoctoral Science Foundation (2018M640721) and Master Education Fund of China Three Gorges University (2018SSPY143).


  1. 1.
    Z.Y. Zhao, W.W. Dai, Inorg. Chem. 53, 13001 (2014)CrossRefGoogle Scholar
  2. 2.
    W.L. Huang, Comput. Mater. Sci. 55, 166 (2012)CrossRefGoogle Scholar
  3. 3.
    C.S. Guo, Y. He, P. Du, X. Zhao, J.P. Lv, W. Meng, Y. Zhang, J. Xu, Appl. Surf. Sci. 320, 383 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Sheng, W.Z. Wang, L. Zhang, J. Hazard Mater. 167, 803 (2009)CrossRefGoogle Scholar
  5. 5.
    X.C. Meng, Z.Z. Li, Z.S. Zhang, Mater. Res. Bull 99, 471 (2018)CrossRefGoogle Scholar
  6. 6.
    S.L. Wang, L.L. Wang, W.H. Ma, D.M. Johnson, Y.F. Fang, M.K. Jia, Y.P. Huang, Chem. Eng. J. 259, 410 (2015)CrossRefGoogle Scholar
  7. 7.
    I.S. Shehu, A. Rohana, K.N.H. Mohd, Res. Chem. Intermediat. 44, 5357 (2018)CrossRefGoogle Scholar
  8. 8.
    X.Y. Kong, B.J. Ng, K.H. Tan, X.F. Chen, H.T. Wang, A.R. Mohamed, S.P. Chai, Catal. Today 314, 20 (2018)CrossRefGoogle Scholar
  9. 9.
    H.F. Cheng, B.B. Huang, Y. Dai, Nanoscale 6, 2009 (2014)CrossRefGoogle Scholar
  10. 10.
    W. Guo, Q. Qin, G. Lei, D. Wang, Y.H. Guo, Y.X. Yang, J. Hazard. Mater. 308, 374 (2016)CrossRefGoogle Scholar
  11. 11.
    D. Mao, X. Lü, Z. Jiang, J. Xie, X. Lu, W. Wei et al., Mater. Lett. 118, 154 (2014)CrossRefGoogle Scholar
  12. 12.
    H.P. Li, T.X. Hu, N. Du, R.J. Zhang, J.Q. Liu, W.G. Hou, Appl. Catal. B Environ. 187, 342 (2016)CrossRefGoogle Scholar
  13. 13.
    J.Z. Liao, L.C. Chen, M.L. Sun, B. Lei, X.L. Zeng, Y.J. Sun, F. Dong, J. Chin. Catal. 39, 779 (2018)CrossRefGoogle Scholar
  14. 14.
    S.M. Hong, H.J. Ren, Y.F. Fang, Y.P. Huang, R.P. Li, Russ. J. Phys. Chem. A 92, 984 (2018)CrossRefGoogle Scholar
  15. 15.
    O. EstévezHernández, P. Santiagojacinto, E. Reguera, Mater. Focus 2(6), 438 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Safari, Z. Akbari, S. Naseh, J. Saudi Chem. Soc. 20, S250 (2016)CrossRefGoogle Scholar
  17. 17.
    P.X. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D.M. Chevrier, P. Zhang, Q. Guo, D. Zang, B.H. Wu, G. Fu, N.F. Zheng, Science 797, 352 (2016)Google Scholar
  18. 18.
    K.S. Suganthi, K.S. Rajan, Int. J. Heat Mass Tran. 55, 7969 (2012)CrossRefGoogle Scholar
  19. 19.
    S.F. Chen, J.P. Li, K. Qian, W.P. Xu, Y. Lu, W.X. Huang, S.H. Yu, Nano Res. 3, 244 (2010)CrossRefGoogle Scholar
  20. 20.
    T. Mattsson, M. Sedin, H. Theliander, Chem. Eng. Sci. 66, 4573 (2011)CrossRefGoogle Scholar
  21. 21.
    C. Hu, Y.C. Tang, Z. Jiang, Z.P. Hao, H.X. Tang, P.K. Wong, Appl. Catal. A Gen. 253, 389 (2003)CrossRefGoogle Scholar
  22. 22.
    F.T. Li, Y. Zhao, Y.J. Hao, X.J. Wang, R.H. Liu, D.S. Zhao, D.M. Chen, J. Hazard. Mater. 239–240, 118 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Artkla, W.Y. Kim, W.Y. Choi, J. Wittayakun, Appl. Catal. B Environ. 91, 157 (2009)CrossRefGoogle Scholar
  24. 24.
    Y. Peng, J. Xu, T. Liu, Y.G. Mao, J. Xu, CrystEngComm 20, 2292 (2018)CrossRefGoogle Scholar
  25. 25.
    O. Mehraj, N.A. Mir, B.M. Pirzada, S. Sabir, M. Muneer, J. Mol. Catal. A: Chem. 395, 16 (2014)CrossRefGoogle Scholar
  26. 26.
    R. Li, H. Ren, W. Ma, S. Hong, L. Wu, Y. Huang, Catal. Commun. 106, 1 (2018)CrossRefGoogle Scholar
  27. 27.
    Z.S. Liu, Y.B. Zhu, D.G. Yin, L.G. Wang, Y.B. Zhu, Catal. Lett. 142, 1489 (2012)CrossRefGoogle Scholar
  28. 28.
    Y.H. Feng, L. Li, J.W. Li, J.F. Wang, L. Liu, J. Hazard. Mater. 192, 538 (2011)CrossRefGoogle Scholar
  29. 29.
    Y.R. Su, C.H. Ding, Y.L. Dang, H. Wang, L.Q. Ye, X.L. Jin, H.Q. Xie, C. Liu, Appl. Surf. Sci. 346, 311 (2015)CrossRefGoogle Scholar
  30. 30.
    L.F. Lu, L. Kong, Z. Jiang, H.H.C. Lai, T.C. Xiao, P.P. Edwards, Catal. Lett. 142, 771 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Fu, Y.L. Tian, B.B. Chang, F.N. Xi, X.P. Dong, J. Mater. Chem. 22, 21159 (2012)CrossRefGoogle Scholar
  32. 32.
    Q. Wang, C.C. Chen, D. Zhao, W.H. Ma, J.C. Zhao, Langmuir 24, 7338 (2008)CrossRefGoogle Scholar
  33. 33.
    T. Papadam, N.P. Xekoukoulotakis, I. Poulios, D. Mantzavinos, J. Photochem. Photobiol. A Chem. 186, 308 (2007)CrossRefGoogle Scholar
  34. 34.
    H.J. Zhang, Y.X. Yang, Z. Zhou, Y.P. Zhao, L. Liu, J. Phys. Chem. C 118, 14662 (2014)CrossRefGoogle Scholar
  35. 35.
    L. Kong, Z. Jiang, H.H. Lai, R.J. Nicholls, T.C. Xiao, M.O. Jones, P.P. Edwards, J. Catal. 293, 116 (2012)CrossRefGoogle Scholar
  36. 36.
    Y. Zhao, X. Tan, T. Yu, S.C. Wang, Mater. Lett. 164, 243 (2016)CrossRefGoogle Scholar
  37. 37.
    Z. Jiang, F. Yang, G.D. Yang, L. Kong, M.O. Jones, T.C. Xiao, P.P. Edwards, J. Photochem. Photobiol. A Chem. 212, 8 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Biological and Pharmaceutical SciencesChina Three Gorges UniversityYichangPeople’s Republic of China
  2. 2.China Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of EducationChina Three Gorges UniversityYichangPeople’s Republic of China
  3. 3.Collaborative Innovation Center for Geo-Hazards and Eco-Environment in Three Gorges Area, Hubei ProvinceChina Three Gorges UniversityYichangPeople’s Republic of China

Personalised recommendations