Skip to main content
Log in

Photodegradation of Rhodamine B and Bisphenol A Over Visible-Light Driven Bi7O9I3-and Bi12O17Cl2-Photocatalysts Under White LED Irradiation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Two different bismuth oxyhalides photocatalysts Bi7O9I3 and Bi12O17Cl2 were obtained by oil bath and hydrothermal methods. The micro/nano-structures obtained were characterized by XRD, SEM, DRS and XPS. The XRD patterns are identical to those already reported. SEM revealed the formation of hierarchical micro/nano structures for Bi7O9I3 and nanobelts for Bi12O17Cl2. Band gap values were determined for both catalysts from DRS and XPS data. The photocatalytic degradation of Rhodamine B and Bisphenol A were studied with both bismuth oxyhalides and compared with commercial titanium dioxide (TiO2). As light source was used a white Light-Emiting Diode lamp. As expected, a poor photocatalytic degradation was obtained in presence of TiO2, but significant drops of concentrations in presence of the bismuth oxyhalides was observed. However, the mineralization of both polluntants was higher in presence of Bi12O17Cl2 than with Bi7O9I3. In addition, a great part of Rhodamine B was removed by Bi7O9I3 in the dark, which is attributed to its morphological features. In contrast, Bisphenol A was degraded under visible light irradiation without significant adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nidheesh PV, Gandhimathi R (2014) Electrolytic removal of Rhodamine B from aqueous solution by peroxicoagulation process. Environ Sci Pollut Res 21:8585–8594. https://doi.org/10.1007/s11356-014-2775-1

    Article  CAS  Google Scholar 

  2. Tampieri F, Giardina A, Bosi FJ et al (2018) Removal of persistent organic pollutants from water using a newly developed atmospheric plasma reactor. Plasma Process Polym 15:1700207. https://doi.org/10.1002/ppap.201700207

    Article  CAS  Google Scholar 

  3. Vieira Y, Leichtweis J, Foletto EL, Silvestri S (2020) Reactive oxygen species-induced heterogeneous photocatalytic degradation of organic pollutant Rhodamine B by copper and zinc aluminate spinels. J Chem Technol Biotechnol 95:791–797. https://doi.org/10.1002/jctb.6267

    Article  CAS  Google Scholar 

  4. Soylak M, Unsal YE, Yilmaz E, Tuzen M (2011) Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food Chem Toxicol 49:1796–1799. https://doi.org/10.1016/j.fct.2011.04.030

    Article  CAS  PubMed  Google Scholar 

  5. Salian-Mehta S, Doshi T, Vanage G (2014) Exposure of neonatal rats to the endocrine disrupter Bisphenol A affects ontogenic expression pattern of testicular steroid receptors and their coregulators. J Appl Toxicol 34:307–318. https://doi.org/10.1002/jat.2882

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Li X, Zhou L et al (2016) Analysis of effects of a new environmental pollutant, bisphenol A, on antioxidant systems in soybean roots at different growth stages. Sci Rep 6:23782. https://doi.org/10.1038/srep23782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu C, Duan W, Li R et al (2013) Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen-like activity. Cell Death Dis 4:e676–e676. https://doi.org/10.1038/cddis.2013.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gámez JM, Penalba R, Cardoso N et al (2014) Low dose of bisphenol A impairs the reproductive axis of prepuberal male rats. J Physiol Biochem 70:239–246. https://doi.org/10.1007/s13105-013-0298-8

    Article  CAS  PubMed  Google Scholar 

  9. Ziv-Gal A, Wang W, Zhou C, Flaws JA (2015) The effects of in utero bisphenol A exposure on reproductive capacity in several generations of mice. Toxicol Appl Pharmacol 284:354–362. https://doi.org/10.1016/j.taap.2015.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dang VH, Nguyen TH, Lee G-S et al (2009) In vitro exposure to xenoestrogens induces growth hormone transcription and release via estrogen receptor-dependent pathways in rat pituitary GH3 cells. Steroids 74:707–714. https://doi.org/10.1016/j.steroids.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  11. EFSA European Food Safety Authority (2008) Ricin (from Ricinus communis) as undesirable substances in animal feed—scientific opinion of the panel on contaminants in the food chain. EFSA J 6:726. https://doi.org/10.2903/j.efsa.2008.726

    Article  Google Scholar 

  12. Sharma K, Dutta V, Sharma S et al (2019) Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review. J Ind Eng Chem 78:1–20. https://doi.org/10.1016/j.jiec.2019.06.022

    Article  CAS  Google Scholar 

  13. Garg A, Singhania T, Singh A et al (2019) Photocatalytic degradation of bisphenol-A using N, Co Codoped TiO2 catalyst under solar light. Sci Rep 9:765. https://doi.org/10.1038/s41598-018-38358-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singh S, Sharma R, Khanuja M (2018) A review and recent developments on strategies to improve the photocatalytic elimination of organic dye pollutants by BiOX (X=Cl, Br, I, F) nanostructures. Korean J Chem Eng 35:1955–1968. https://doi.org/10.1007/s11814-018-0112-y

    Article  CAS  Google Scholar 

  15. Yang Y, Zhang C, Lai C et al (2018) BiOX (X = Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management. Adv Colloid Interface Sci 254:76–93. https://doi.org/10.1016/j.cis.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  16. Xiao X, Liu C, Hu R et al (2012) Oxygen-rich bismuth oxyhalides: generalized one-pot synthesis, band structures and visible-light photocatalytic properties. J Mater Chem 22:22840. https://doi.org/10.1039/c2jm33556e

    Article  CAS  Google Scholar 

  17. Ji M, Chen R, Di J et al (2019) Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to boost the photocatalytic activity. J Colloid Interface Sci 533:612–620. https://doi.org/10.1016/j.jcis.2018.08.097

    Article  CAS  PubMed  Google Scholar 

  18. Chachvalvutikul A, Jakmunee J, Thongtem S et al (2019) Novel FeVO4/Bi7O9I3 nanocomposite with enhanced photocatalytic dye degradation and photoelectrochemical properties. Appl Surf Sci 475:175–184. https://doi.org/10.1016/j.apsusc.2018.12.214

    Article  CAS  Google Scholar 

  19. Zheng J, Chang F, Jiao M et al (2018) A visible-light-driven heterojuncted composite WO3/Bi12O17Cl2: Synthesis, characterization, and improved photocatalytic performance. J Colloid Interface Sci 510:20–31. https://doi.org/10.1016/j.jcis.2017.07.119

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Yao H, Wang J et al (2011) Influence of the precipitation pH on the compositions and properties of Bi-based oxyiodide photocatalysts. Mater Res Bull 46:292–296. https://doi.org/10.1016/j.materresbull.2010.10.014

    Article  CAS  Google Scholar 

  21. Yan Q, Zhao Y, Xu M, Wang Y (2016) Enhanced visible-light photocatalytic performance of various bismuth oxyiodide with 3D hierarchical microspheres architecture. J Nanosci Nanotechnol 16:7731–7737. https://doi.org/10.1166/jnn.2016.12585

    Article  CAS  Google Scholar 

  22. Hao L, Huang H, Guo Y et al (2017) Bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 with unselectively efficient photocatalytic activity and mechanism insight. Appl Surf Sci 420:303–312. https://doi.org/10.1016/j.apsusc.2017.05.076

    Article  CAS  Google Scholar 

  23. Liu Q-C, Ma D-K, Hu Y-Y et al (2013) Various bismuth oxyiodide hierarchical architectures: alcohothermal-controlled synthesis, photocatalytic activities, and adsorption capabilities for phosphate in water. ACS Appl Mater Interfaces 5:11927–11934. https://doi.org/10.1021/am4036702

    Article  CAS  PubMed  Google Scholar 

  24. Wu G, Zhao Y, Li Y et al (2018) pH-dependent synthesis of iodine-deficient bismuth oxyiodide microstructures: Visible-light photocatalytic activity. J Colloid Interface Sci 510:228–236. https://doi.org/10.1016/j.jcis.2017.09.053

    Article  CAS  PubMed  Google Scholar 

  25. Chang F, Luo J, Wang X et al (2015) Poly(vinyl pyrrolidone)-assisted hydrothermal synthesis and enhanced visible-light photocatalytic performance of oxygen-rich bismuth oxychlorides. J Colloid Interface Sci 459:136–145. https://doi.org/10.1016/j.jcis.2015.08.023

    Article  CAS  PubMed  Google Scholar 

  26. Chang F, Lei B, Zhang X et al (2019) The reinforced photocatalytic performance of binary-phased composites Bi-Bi12O17Cl2 fabricated by a facile chemical reduction protocol. Colloids Surf A 572:290–298. https://doi.org/10.1016/j.colsurfa.2019.04.014

    Article  CAS  Google Scholar 

  27. Huang H, Xiao K, He Y et al (2016) In situ assembly of BiOI@Bi12O17Cl 2 p - n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI 001 active facets for robust and nonselective photocatalysis. Appl Catal B 199:75–86. https://doi.org/10.1016/j.apcatb.2016.06.020

    Article  CAS  Google Scholar 

  28. Liu X, Xing Y, Liu Z, Du C (2018) Enhanced photocatalytic activity of Bi12O17Cl2 preferentially oriented growth along [200] with various surfactants. J Mater Sci 53:14217–14230. https://doi.org/10.1007/s10853-018-2637-1

    Article  CAS  Google Scholar 

  29. Long Z, Xian G, Zhang G et al (2020) BiOCl-Bi12O17Cl2 nanocomposite with high visible-light photocatalytic activity prepared by an ultrasonic hydrothermal method for removing dye and pharmaceutical. Chinese J Catal 41:464–473. https://doi.org/10.1016/S1872-2067(19)63474-1

    Article  CAS  Google Scholar 

  30. Shi L, Ma J, Yao L et al (2018) Enhanced photocatalytic activity of Bi12O17Cl2 nano-sheets via surface modification of carbon nanotubes as electron carriers. J Colloid Interface Sci 519:1–10. https://doi.org/10.1016/j.jcis.2018.02.056

    Article  CAS  PubMed  Google Scholar 

  31. Xiao X, Hao R, Zuo X et al (2012) Microwave-assisted synthesis of hierarchical Bi7O9I3 microsheets for efficient photocatalytic degradation of bisphenol-A under visible light irradiation. Chem Eng J 209:293–300. https://doi.org/10.1016/j.cej.2012.07.142

    Article  CAS  Google Scholar 

  32. Zhang D, Wang F, Cao S, Duan X (2018) Rapid microwave irradiation synthesis and characterization of Bi7O9I3 photocatalyst for the degradation of bisphenol A. Mater Lett 218:32–35. https://doi.org/10.1016/j.matlet.2018.01.105

    Article  CAS  Google Scholar 

  33. Wang C-Y, Zhang X, Qiu H-B et al (2017) Photocatalytic degradation of bisphenol A by oxygen-rich and highly visible-light responsive Bi12O17Cl2 nanobelts. Appl Catal B 200:659–665. https://doi.org/10.1016/j.apcatb.2016.07.054

    Article  CAS  Google Scholar 

  34. Xiao X, Zhang W-D (2011) Hierarchical Bi7O9I3 micro/nano-architecture: facile synthesis, growth mechanism, and high visible light photocatalytic performance. RSC Adv 1:1099. https://doi.org/10.1039/c1ra00323b

    Article  CAS  Google Scholar 

  35. Xu M, Zhao Y, Yan Q (2015) Efficient visible-light photocatalytic degradation of sulfadiazine sodium with hierarchical Bi7O9I3 under solar irradiation. Water Sci Technol 72:2122–2131. https://doi.org/10.2166/wst.2015.433

    Article  CAS  PubMed  Google Scholar 

  36. Xiao X, Jiang J, Zhang L (2013) Selective oxidation of benzyl alcohol into benzaldehyde over semiconductors under visible light: The case of Bi12O17Cl2 nanobelts. Appl Catal B 142–143:487–493. https://doi.org/10.1016/j.apcatb.2013.05.047

    Article  CAS  Google Scholar 

  37. Hu L, Hu H, Lu W et al (2019) Novel composite BiFeO3/ZrO2 and its high photocatalytic performance under white LED visible-light irradiation. Mater Res Bull 120:110605. https://doi.org/10.1016/j.materresbull.2019.110605

    Article  CAS  Google Scholar 

  38. Natarajan K, Bajaj HC, Tayade RJ (2016) Photocatalytic efficiency of bismuth oxyhalide (Br, Cl and I) nanoplates for RhB dye degradation under LED irradiation. J Ind Eng Chem 34:146–156. https://doi.org/10.1016/j.jiec.2015.11.003

    Article  CAS  Google Scholar 

  39. Tahmasebi N, Sezari S, Abbasi H, Barzegar S (2019) Investigation of photodegradation of rhodamine B over a BiOX (X = Cl, Br and I) photocatalyst under white LED irradiation. Bull Mater Sci 42:166. https://doi.org/10.1007/s12034-019-1841-1

    Article  CAS  Google Scholar 

  40. Estrada-Flores S, Martínez-Luévanos A, Perez-Berumen CM et al (2020) Relationship between morphology, porosity, and the photocatalytic activity of TiO2 obtained by sol–gel method assisted with ionic and nonionic surfactants. Boletín la Soc Española Cerámica y Vidr 59:209–218. https://doi.org/10.1016/j.bsecv.2019.10.003

    Article  CAS  Google Scholar 

  41. Nandiyanto ABD, Zaen R, Oktiani R (2020) Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles. Arab J Chem 13:1283–1296. https://doi.org/10.1016/j.arabjc.2017.10.010

    Article  CAS  Google Scholar 

  42. Chang F, Wu F, Yan W et al (2019) Oxygen-rich bismuth oxychloride Bi12O17Cl2 materials: construction, characterization, and sonocatalytic degradation performance. Ultrason Sonochem 50:105–113. https://doi.org/10.1016/j.ultsonch.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  43. Kubelka P, Munk F (1931) An article on optics of paint layers. Fuer Tekn Phys 12:593–609

    Google Scholar 

  44. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15:627–637. https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  45. Davis EA, Mott NF (1970) Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag 22:0903–0922. https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  46. Makuła P, Pacia M, Macyk W (2018) How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J Phys Chem Lett 9:6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  PubMed  Google Scholar 

  47. Zanatta AR (2019) Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination. Sci Rep 9:11225. https://doi.org/10.1038/s41598-019-47670-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang X, Zhang L (2010) Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping: the case of BiOI. J Phys Chem C 114:18198–18206. https://doi.org/10.1021/jp105118m

    Article  CAS  Google Scholar 

  49. Zhou C, Lai C, Xu P et al (2018) Rational design of carbon-doped carbon Nitride/Bi12O17Cl2 composites: a promising candidate photocatalyst for boosting visible-light-driven photocatalytic degradation of tetracycline. ACS Sustain Chem Eng 6:6941–6949. https://doi.org/10.1021/acssuschemeng.8b00782

    Article  CAS  Google Scholar 

  50. Mousavi M, Habibi-Yangjeh A, Abitorabi M (2016) Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J Colloid Interface Sci 480:218–231. https://doi.org/10.1016/j.jcis.2016.07.021

    Article  CAS  PubMed  Google Scholar 

  51. Yang L, Liu B, Liu T et al (2017) A P25/(NH4)xWO3 hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Sci Rep 7:45715. https://doi.org/10.1038/srep45715

    Article  CAS  PubMed Central  Google Scholar 

  52. Swetha S, Santhosh SM, Geetha Balakrishna R (2010) Synthesis and comparative study of nano-TiO2 over degussa P-25 in disinfection of water. Photochem Photobiol 86:628–632. https://doi.org/10.1111/j.1751-1097.2009.00685.x

    Article  CAS  PubMed  Google Scholar 

  53. Wilczewska P, Bielicka-Giełdoń A, Szczodrowski K et al (2021) Morphology regulation mechanism and enhancement of photocatalytic performance of BiOX (X = Cl, Br, I) via mannitol-assisted synthesis. Catalysts 11:312. https://doi.org/10.3390/catal11030312

    Article  CAS  Google Scholar 

  54. Wang X, Yang S, Li H et al (2014) High adsorption and efficient visible-light-photodegradation for cationic Rhodamine B with microspheric BiOI photocatalyst. RSC Adv 4:42530–42537. https://doi.org/10.1039/C4RA05506C

    Article  CAS  Google Scholar 

  55. Ahmed MA, Abou-Gamra ZM, Medien HAA, Hamza MA (2017) Effect of porphyrin on photocatalytic activity of TiO 2 nanoparticles toward Rhodamine B photodegradation. J Photochem Photobiol B 176:25–35. https://doi.org/10.1016/j.jphotobiol.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  56. Merka O, Yarovyi V, Bahnemann DW, Wark M (2011) pH-Control of the photocatalytic degradation mechanism of Rhodamine B over Pb 3 Nb 4 O 13. J Phys Chem C 115:8014–8023. https://doi.org/10.1021/jp108637r

    Article  CAS  Google Scholar 

  57. Wang P, Cheng M, Zhang Z (2014) On different photodecomposition behaviors of rhodamine B on laponite and montmorillonite clay under visible light irradiation. J Saudi Chem Soc 18:308–316. https://doi.org/10.1016/j.jscs.2013.11.006

    Article  CAS  Google Scholar 

  58. Wang F, Lu X, Peng W et al (2017) Sorption behavior of bisphenol A and triclosan by graphene: comparison with activated carbon. ACS Omega 2:5378–5384. https://doi.org/10.1021/acsomega.7b00616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang C-Y, Zhang X, Song X-N et al (2016) Novel Bi12O15Cl6 photocatalyst for the degradation of bisphenol A under visible-light irradiation. ACS Appl Mater Interfaces 8:5320–5326. https://doi.org/10.1021/acsami.5b12092

    Article  CAS  PubMed  Google Scholar 

  60. Wang C-Y, Zhang Y-J, Wang W-K et al (2018) Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation. Appl Catal B 221:320–328. https://doi.org/10.1016/j.apcatb.2017.09.036

    Article  CAS  Google Scholar 

  61. Wu D, Wang B, Wang W et al (2015) Visible-light-driven BiOBr nanosheets for highly facet-dependent photocatalytic inactivation of Escherichia coli. J Mater Chem A 3:15148–15155. https://doi.org/10.1039/C5TA02757H

    Article  CAS  Google Scholar 

  62. Wu D, Wang W, Ng TW et al (2016) Visible-light-driven photocatalytic bacterial inactivation and the mechanism of zinc oxysulfide under LED light irradiation. J Mater Chem A 4:1052–1059. https://doi.org/10.1039/C5TA08044D

    Article  CAS  Google Scholar 

  63. Kayes N, Miah J, Obaidullah M et al (2016) Immobilization of ZnO suspension on glass substrate to remove filtration during the removal of remazol red R from aqueous solution. J Adv Chem 12:4127–4133. https://doi.org/10.24297/jac.v12i6.6990

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to the laboratory technicians of Ikiam University and from the Leibniz-Institut für Polymerforschung (IPF-Dresden), especially Mrs. Cornelia Schlendstedt. To the “Research Laboratory of Instituto Nacional de Patrimonio Cultural (Ecuador)”, for the support in instrumental characterization. MZ and DT, were part of #BIOX, which is one of the HiWater's undergraduate research programs.

Funding

The “HiWater: Efficient and affordable water treatment technologies to minimise waterborne diseases'' consortium (SENESCyT: EULACHT02-0143) provided the resources to develop this research work. MZ, DT, received a fellowship from HiWater/SENESCyT.

Author information

Authors and Affiliations

Authors

Contributions

DTG: conceptualization, data curation, methodology, investigation, writing-original draft. MZC: Investigation. LQQ: Methodology. CR: Investigation. CPS: Investigation. MHR: supervision, writing—review & editing. Pablo A. Cisneros-Perez: supervision, writing—review & editing.

Corresponding author

Correspondence to Pablo A. Cisneros-Pérez.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Ethical approval were not required for this research because this work didn’t involve studies in animals, humans, or other living organisms.

Informed Consent

Informed consent were not required for this research because this work didn’t involve studies in animals, humans, or other living organisms.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 706 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuba-Guaman, D., Zuarez-Chamba, M., Quishpe-Quishpe, L. et al. Photodegradation of Rhodamine B and Bisphenol A Over Visible-Light Driven Bi7O9I3-and Bi12O17Cl2-Photocatalysts Under White LED Irradiation. Top Catal 65, 1028–1044 (2022). https://doi.org/10.1007/s11244-022-01689-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01689-0

Keywords

Navigation