Research on Chemical Intermediates

, Volume 44, Issue 12, pp 7731–7752 | Cite as

Development of horseradish peroxidase/layered double hydroxide hybrid catalysis for phenol degradation

  • Elena-Florentina Grosu
  • Gabriela Cârjă
  • Renato FroidevauxEmail author


Both photocatalytic and enzymatic degradation of phenol were studied in order to evaluate and to compare the catalytic potential of both methods. For this, solar-sensitive ZnMe (Me = Al, Cr) layered double hydroxides (LDHs) and their derived mixtures of mixed oxides (MMOs) were synthesized via co-precipitation and calcination at 750 °C, while the calcined LDH at 550 °C was used for horseradish peroxidase (HRP) immobilization through absorption. The structural, optical and thermal properties of catalysts were investigated by XRD, FTIR, TG/DTA, TEM and UV–Vis analyses. We approached here for the first time the use of LDH–HRP biohybrid for phenol degradation. Further, since HRP operates similarly as photocatalysts, we also investigated the ability of LDH–HRP to generate photo-enzymatic responses, when the biocatalyst is used under solar light. Both degradation methods are able to remove phenol from solution via different pathways, namely step-by-step phenol photodegradation and phenol enzymatic polymerization, when an insoluble product is obtained at the end of reaction. After 7 h of reaction, 95% of phenol was removed by a MMOs, while ZnAlLDH + light, ZnAlLDH–HRP and ZnAlLDH–HRP + light removed 20, 25 and 35% of phenol via photo-, enzymatic and photo-enzymatic catalysis, respectively.


LDH HRP Phenol Simultaneous Photo-enzymatic Degradation 



The authors thank Eric Gautron (Institut des Matériaux Jean Rouxel - NANTES - France), Joelle Thuriot (REALCAT platform - ‘Future Investments’ program (PIA), with the contractual reference ‘ANR-11-EQPX-00370) and Pascale Dewalle (Ecole Centrale Lille - France) for their help in obtaining the TEM, EDX, XRD and N2 sorption data. E-F Grosu thanks the Governments of France and Romania for the financial support during the doctoral studies. FEDER is also acknowledged for supporting and funding partially this work.

Supplementary material

11164_2018_3583_MOESM1_ESM.docx (614 kb)
Supplementary material 1 (DOCX 613 kb)


  1. 1.
    World Water Development Report: Water for a Sustainable World (UNESCO, Paris, 2015)Google Scholar
  2. 2.
    K.Q. Wilberg, D.G. Nunes, J. Rubio, Braz. J. Chem. Eng. 17, 907 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Sonune, R. Ghate, Desalination 167, 55 (2004)CrossRefGoogle Scholar
  4. 4.
    C. Guomin, Y. Guoping, S. Mei, W. Yongjian, WST 59, 1019 (2009)CrossRefGoogle Scholar
  5. 5.
    D. Xu, S. Cao, J. Zhang, B. Cheng, J. Yu, Beilstein J. Nanotechnol. 5, 658 (2014)CrossRefGoogle Scholar
  6. 6.
    H. Park, H-i Kim, G-h Moon, W. Choi, Energy Environ. Sci. 9, 411 (2016)CrossRefGoogle Scholar
  7. 7.
    K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Water Res. 88, 428 (2016)CrossRefGoogle Scholar
  8. 8.
    T. Kameda, E. Kondo, T. Yoshioka, J. Environ. Manag. 151, 303 (2015)CrossRefGoogle Scholar
  9. 9.
    G. Mikami, F. Grosu, S. Kawamura, Y. Yoshida, G. Carja, Y. Izumi, Appl. Catal. B 199, 260 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Kuang, L. Zhao, S. Zhang, F. Zhang, M. Dong, S. Xu, Materials 3, 5220 (2010)CrossRefGoogle Scholar
  11. 11.
    X. Zhao, L. Wang, X. Xu, X. Lei, S. Xu, F. Zhang, AIChE J. 58, 573 (2012)CrossRefGoogle Scholar
  12. 12.
    E.M. Seftel, E. Popovici, M. Mertens, K. De Witte, G. Van Tendeloo, P. Cool, E.F. Vansant, Microporous Mesoporous Mater. 113, 296 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Kim, J. Fahel, P. Durand, E. André, C. Carteret, Eur. J. Inorg. Chem. 2017, 669 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Ma, J. Ding, L. Yu, L. Li, Y. Kong, S. Komarneni, Appl. Clay Sci. 107, 85 (2015)CrossRefGoogle Scholar
  15. 15.
    X. Wang, P. Wu, Z. Huang, N. Zhu, J. Wu, P. Li, Z. Dang, Appl. Clay Sci. 95, 95 (2014)CrossRefGoogle Scholar
  16. 16.
    Q. Liu, J. Ma, K. Wang, T. Feng, M. Peng, Z. Yao, C. Fan, S. Komarneni, Ceram. Int. 43, 5751 (2017)CrossRefGoogle Scholar
  17. 17.
    D. Chen, Y. Li, J. Zhang, J-z Zhou, Y. Guo, H. Liu, Chem. Eng. J. 185–186, 120 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Pausova, J. Krysa, J. Jirkovsky, C. Forano, G. Mailhot, V. Prevot, Appl. Catal. B 170–171, 25 (2015)CrossRefGoogle Scholar
  19. 19.
    L. Mohapatra, K.M. Parida, Sep. Purif. Technol. 91, 73 (2012)CrossRefGoogle Scholar
  20. 20.
    S. Xia, L. Zhang, X. Zhou, M. Shao, G. Pan, Z. Ni, Appl. Catal. B 176–177, 266 (2015)CrossRefGoogle Scholar
  21. 21.
    K. Katsumata, K. Sakai, K. Ikeda, G. Carja, N. Matsushita, K. Okada, Mater. Lett. 107, 138 (2013)CrossRefGoogle Scholar
  22. 22.
    C. Wang, B. Ma, S. Xu, D. Li, S. He, Y. Zhao, J. Han, M. Wei, D.G. Evans, X. Duan, Nano Energy 32, 463 (2017)CrossRefGoogle Scholar
  23. 23.
    B. Luo, R. Song, D. Jing, Int. J. Hydrog. Energy 42, 23427 (2017)CrossRefGoogle Scholar
  24. 24.
    C.S. Karigar, S.S. Rao, Enzyme Res. 2011, 805187 (2011)CrossRefGoogle Scholar
  25. 25.
    P.M. Kolhe, S.T. Ingle, N.D. Wagh, Annu. Res. Rev. Biol. 8, 1 (2015)CrossRefGoogle Scholar
  26. 26.
    G. Bayramoglu, M.Y. Arıca, J. Hazard. Mater. 156, 148 (2008)CrossRefGoogle Scholar
  27. 27.
    H. Kawakita, Sci. Technol. 2, 25 (2012)CrossRefGoogle Scholar
  28. 28.
    M.B. Arnao, M. Acosta, J.A. del Rio, R. Varon, F. Garcia-Canovas, Biochim. Biophys. Acta 1041, 43 (1990)CrossRefGoogle Scholar
  29. 29.
    L. Mao, S. Luo, Q. Huang, J. Lu, Sci. Rep. 4(3), 3126 (2013)CrossRefGoogle Scholar
  30. 30.
    S.J. Kim, B.K. Song, Y.J. Yoo, Y.H. Kim, J. Korean Soc. Appl. Biol. Chem. 57, 743 (2014)CrossRefGoogle Scholar
  31. 31.
    H. Hamdi, A. Namane, D. Hank, A. Hella, JMES 8, 3953 (2017)Google Scholar
  32. 32.
    D. Zhou, S. Dong, J. Shi, X. Cui, D. Ki, C.I. Torres, B.E. Rittmann, Chem. Eng. J. 317, 882 (2017)CrossRefGoogle Scholar
  33. 33.
    H. Xiong, D. Zou, D. Zhou, S. Dong, J. Wang, B.E. Rittmann, Chem. Eng. J. 316, 7 (2017)CrossRefGoogle Scholar
  34. 34.
    J. Jia, S. Zhanga, P. Wanga, H. Wang, J. Hazard. Mater. 205–206, 150 (2012)CrossRefGoogle Scholar
  35. 35.
    R. Sarkhanpour, O. Tavakoli, M.H. Sarrafzadeh, H.R. Kariminia, J. Environ. Sci. Health A 48, 300 (2013)CrossRefGoogle Scholar
  36. 36.
    P. Peralta-Zamora, A. Kunz, S. Gomes de Moraes, R. Pelegrini, P. de Campos Molelro, J. Reyes, N. Duran, Chemosphere 38, 835 (1999)CrossRefGoogle Scholar
  37. 37.
    L. Yin, Z. Shen, J. Niu, J. Chen, Y. Duan, Environ. Sci. Technol. 44, 9117 (2010)CrossRefGoogle Scholar
  38. 38.
    P. Peralta-Zamora, C.M. Pereira, E.R.L. Tiburtius, S.G. Moraes, M.A. Rosa, R.C. Minussi, N. Durán, Appl. Catal. B 42, 131 (2003)CrossRefGoogle Scholar
  39. 39.
    S. Shoabargh, A. Karimi, G. Dehghan, A. Khataee, JIEC 20, 3150 (2014)Google Scholar
  40. 40.
    F. Cavani, F. Trifiro, V. Vaccari, Catal. Today 11, 173 (1991)CrossRefGoogle Scholar
  41. 41.
    A.A.A. Ahmed, Z.A. Talib, M.Z.B. Hussein, Appl. Clay Sci. 56, 68 (2012)CrossRefGoogle Scholar
  42. 42.
    R. Rojas, C. Barriga, C.P. De Pauli, M.J. Avena, Mater. Chem. Phys. 119, 303 (2010)CrossRefGoogle Scholar
  43. 43.
    V. Prevot, C. Forano, J.P. Besse, Chem. Mater. 17, 6695 (2005)CrossRefGoogle Scholar
  44. 44.
    S. Pausová, J. Krysa, J. Jirkovsky, C. Forano, G. Mailhot, V. Prevot, Appl. Catal. B 170, 25 (2015)CrossRefGoogle Scholar
  45. 45.
    M.Z. Hussein, A.M. Jaafar, A. Hj, M.J. Yahaya, Z.Zainal Masarudin, Int. J. Mol. Sci. 15, 20254 (2014)CrossRefGoogle Scholar
  46. 46.
    E.M. Seftel, M. Niarchos, C. Mitropoulos, M. Mertensc, E.F. Vansant, P. Cool, Catal. Today 252, 120 (2015)CrossRefGoogle Scholar
  47. 47.
    M. Hadnadjev-Kostic, T. Vulic, R. Marinkovic-Neducin, Adv. Powder Technol. 25, 1624 (2014)CrossRefGoogle Scholar
  48. 48.
    R.K. Sahu, B.S. Mohanta, N.N. Das, J. Phys. Chem. Solids 74, 1263 (2013)CrossRefGoogle Scholar
  49. 49.
    X. Liu, L. Luo, Y. Ding, Y. Xu, Analyst 136, 696 (2011)CrossRefGoogle Scholar
  50. 50.
    D. Gingasu, I. Mindru, L. Patron, D.C. Culita, J.M. Calderon-Moreno, L. Diamandescu, M. Feder, O. Oprea, J. Phys. Chem. Solids 74, 1295 (2013)CrossRefGoogle Scholar
  51. 51.
    A. Radoi, L. Dumitru, L. Barthelmebs, J.-L. Marty, Anal. Lett. 42, 1187 (2009)CrossRefGoogle Scholar
  52. 52.
    P.R. Chowdhury, K.G. Bhattacharyya, Dalton Trans. 44, 6809 (2015)CrossRefGoogle Scholar
  53. 53.
    M.Z. Anwar, D.J. Kim, A. Kumar, S.K.S. Patel, S. Otari, P. Mardina, J.H. Jeong, J.H. Sohn, J.H. Kim, J.T. Park, J.K. Lee, Sci. Rep. 7, 15333 (2017)CrossRefGoogle Scholar
  54. 54.
    M. De Oliveira Melo, L.A. Silva, J. Braz. Chem. Soc. 22, 1399 (2011)Google Scholar
  55. 55.
    D.B. Ingram, S. Linic, J. Am. Chem. Soc. 133, 5202 (2011)CrossRefGoogle Scholar
  56. 56.
    G. Chen, S. Qian, X. Tu, X. Wei, J. Zou, L. Leng, S. Luo, Appl. Surf. Sci. 293, 345 (2014)CrossRefGoogle Scholar
  57. 57.
    E.M. Seftel, M.C. Puscasu, M. Mertens, P. Cool, G. Carja, Appl. Catal. B 150–151, 157 (2014)CrossRefGoogle Scholar
  58. 58.
    M. Khune, J. Akach, A. Ochieng, in ICCEACT, vol. 19 ( Pretoria, 2014)Google Scholar
  59. 59.
    E.-F. Grosu, G. Carja, Bull. Polytech. Inst. Chem. Eng. Sect. 63, 52 (2017)Google Scholar
  60. 60.
    C.M. Puscasu, G. Carja, M. Mureseanu, C. Zaharia, IOP Conf. Ser. Mater. Sci. Eng. 227, 012105 (2017)CrossRefGoogle Scholar
  61. 61.
    A. de Roy, C. Forano, K.E. Malki, J.P. Besse, in Expanded Clays and Other Microporous Solids, ed. by M.L. Occelli, H.E. Robson (Springer, Boston, 1992), p. 108CrossRefGoogle Scholar
  62. 62.
    J. Prince, F. Tzompantzi, G. Mendoza-Damián, F. Hernández-Beltrán, J.S. Valente, Appl. Catal. B 163, 352 (2015)CrossRefGoogle Scholar
  63. 63.
    E.M. Seftel, M. Puscasu, M. Mertensc, P. Cool, G. Carja, Catal. Today 252, 7 (2015)CrossRefGoogle Scholar
  64. 64.
    A. Mantilla, F. Tzompantzi, J.L. Fernandez, J.A.I. Dıaz Gongora, R. Gomez, Catal. Today 150, 353 (2010)CrossRefGoogle Scholar
  65. 65.
    R.R. Sheha, A.H. Harb, I.El-T. El-sayed, A. Sh. Saleh, H.H. Someda, in 4th International Conference on Radiation Research and Applied Sciences (2014), p. 151Google Scholar
  66. 66.
    J.S. Valente, F. Tzompantzi, J. Prince, J.G.H. Cortez, R. Gomez, Appl. Catal. B 90, 330 (2009)CrossRefGoogle Scholar
  67. 67.
    H. Fan, J. Zhu, J. Sun, S. Zhang, S. Ai, Chem. Eur. J. 19, 2523 (2013)CrossRefGoogle Scholar
  68. 68.
    M.F. de Almeida, C.R. Bellato, A.H. Mounteer, S.O. Ferreira, J.L. Milagres, L.D. Lima Miranda, Appl. Surf. Sci. 357, 1765 (2015)CrossRefGoogle Scholar
  69. 69.
    J.S. Valente, F. Tzompantzi, J. Prince, Appl. Catal. B 102, 276 (2011)CrossRefGoogle Scholar
  70. 70.
    N.C. Veitch, Phytochemistry 65, 249 (2004)CrossRefGoogle Scholar
  71. 71.
    G. Bayramoglu, M.Y. Arıca, J. Hazard. Mater. 156, 148 (2008)CrossRefGoogle Scholar
  72. 72.
    Q. Chang, J. Huang, Y. Ding, H. Tang, Molecules 21, 1044 (2016)CrossRefGoogle Scholar
  73. 73.
    J. Cheng, S.Y. Ming, P. Zuo, Water Res. 40, 283 (2006)CrossRefGoogle Scholar
  74. 74.
    M.S.M. Eldin, D.G. Mita, Curr. Biotechnol. 3, 207 (2014)CrossRefGoogle Scholar
  75. 75.
    F. Secundo, Chem. Soc. Rev. 42, 6250 (2013)CrossRefGoogle Scholar
  76. 76.
    A. Lante, F. Tinello, G. Lomolino, Innov. Food Sci. Emerg. Technol. 17, 130 (2013)CrossRefGoogle Scholar
  77. 77.
    E. Koumaki, D. Mamais, C. Noutsopoulos, M.-C. Nika, A.A. Bletsou, N.S. Thomaidis, A. Eftaxias, G. Stratogianni, Chemosphere 138, 675 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental ProtectionTechnical University “Gh. Asachi” of IasiIasiRomania
  2. 2.Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d’OpaleLilleFrance

Personalised recommendations