Skip to main content
Log in

Synthesis of Hydroxide–TiO2 Compounds with Photocatalytic Activity for Degradation of Phenol

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Photocatalytic degradation of phenol using titanium dioxide (TiO2), either alone or in combination with other materials, has been tested. Mg/Al hydrotalcites prepared by two methods using inorganic (HC) or organic (HS) chemical reagents, along with mixed oxides produced by calcination of these products (HCC and HSC), were mixed with titanium isopropoxide to obtain hydroxide–TiO2 compounds (HCC–TiO2 and HSC–TiO2) and their photocatalytic activity tested in solutions of 10 mg/L phenol at 120 min under illumination at λ UV = 254 nm with power of 4 W or 8 W. The obtained materials were characterized by various techniques, revealing that TiO2 was incorporated into the mixed oxides of the calcined hydrotalcite to form the above-mentioned compounds. The photocatalytic test results indicate that the activity of HCC–TiO2 can be attributed to increased phenol adsorption by hydrotalcite for transfer to the active photocatalytic phase of the impregnated TiO2 particles, while the better results obtained for HSC–TiO2 are due to greater catalyst impregnation on the surface of the calcined hydrotalcite, reducing the screening phenomenon and achieving HSC–TiO2 degradation of up to 21.0% at 8 W. Reuse of both compounds indicated tight combination of HCC or HSC with TiO2, since in four successive separation cycles there was little reduction of activity, being associated primarily with material loss during recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ali, M. Asim, and T.A. Khan, J. Environ. Manag. 113, 170 (2012).

    Article  Google Scholar 

  2. F. Tumakaka, I.V. Prikhodko, and G. Sadowski, Fluid Phase Equilib. 260, 98 (2007).

    Article  Google Scholar 

  3. R.T.P. Pinto, L. Lintomen, L.F.L. Luz, and M.R. Wolf-Maciel, Fluid Phase Equilib. 228–229, 447 (2005).

    Article  Google Scholar 

  4. M.N. Rashed, Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater in Organic Pollutants-Monitoring, Risk and Treatment (Aswan: Intech, 2013), pp. 167–195.

    Book  Google Scholar 

  5. V.M. Kuznetsov, A.M. Toikka, and Y.P. Kuznetsov, Russ. J. Appl. Chem. 80, 904 (2007).

    Article  Google Scholar 

  6. M.T.A. Reis, O.M.F. de Freitas, M.R.C. Ismael, and J.M.R. Carvalho, J. Membr. Sci. 305, 313 (2007).

    Article  Google Scholar 

  7. P.S. Liu, H.Y. Du, and F.J. Xia, Mater. Des. 51, 193 (2013).

    Article  Google Scholar 

  8. K. Naeem and F. Ouyang, J. Environ. Sci. 25, 399 (2013).

    Article  Google Scholar 

  9. V. Durgakumari, M. Subrahmanyama, K.V. Subba Rao, A. Ratnamala, M. Noorjahan, and K. Tanaka, Appl. Catal. A Gen. 234, 156 (2002).

    Article  Google Scholar 

  10. P.S. Yap, Y.L. Cheah, M. Srinivasan, and T.T. Lim, Appl. Catal. A Gen. 427–428, 126 (2012).

    Google Scholar 

  11. A. Vaccari, Appl. Clay Sci. 175, 161 (1999).

  12. V. Vágvölgyi, S. Palmer, J. Kristóf, R.L. Frost, and E. Horváth, J. Colloid Interface Sci. 318, 302 (2008).

    Article  Google Scholar 

  13. Q. Wang, H.H. Tay, Z. Guo, L. Chen, Y. Liu, J. Chang, Z. Zhong, J. Luo, and A. Borgna, Appl. Clay Sci. 55, 23 (2012).

    Google Scholar 

  14. Z. Huang, P. Wua, Y. Lu, X. Wang, and N. Zhu, J. Hazard. Mater. 246–247, 73 (2013).

    Google Scholar 

  15. G. Mendoza-Damián, F. Tzompantzi, A. Mantilla, and L. Lartundo-Rojas, J. Hazard. Mater. 263, 68 (2013).

    Article  Google Scholar 

  16. S.P. Paredes, M.A. Valenzuela, G. Fetter, and S.O. Flores, J. Phys. Chem. Sol. 72, 915 (2011).

    Article  Google Scholar 

  17. S. Martinez-Gallegos, H. Pfeiffer, E. Lima, M. Espinosa, P. Bosch, and S. Bulbulian, Microporous Mesoporous Mater. 94, 235 (2006).

    Article  Google Scholar 

  18. E. Ramos-Ramirez, N.L. Gutierrez-Ortega, C.A. Contreras-Soto, and M.T. Olguin-Gutierrez, J. Hazard. Mater. 172, 1528 (2009).

    Article  Google Scholar 

  19. J. Rodier, Analisis de Aguas, 1st ed. (Madrid: Omega, 1981), pp. 50–62.

    Google Scholar 

  20. A. Obadiha, R. Kannan, P. Ravichandran, and A. Ramasubbu, Dig. J. Nanomater. Biostruct. 7, 323 (2012).

    Google Scholar 

  21. S. Britto, G. Thomas, P. Kamath, and S. Kannan, Appl. Clay Sci. 48, 245 (2010).

    Google Scholar 

  22. N. Balsamo, S. Mendieta, M.G. Oliva, M. Eimer, and G. Crivello, Proc. Mater. Sci. 1, 509 (2012).

    Google Scholar 

  23. S.P. Paredes, G. Fetter, P. Bosh, and S. Bulbulian, J. Mater. Sci. 41, 3379 (2006).

    Article  Google Scholar 

  24. R.A. Spurr and H. Myers, Anal. Chem. 29, 762 (1957).

    Article  Google Scholar 

  25. S.H. Lin, C.H. Chiou, C.K. Chang, and R.S. Juang, J. Environ. Manag. 92, 3110 (2011).

    Article  Google Scholar 

  26. X. Bai, X. Zhang, Z. Hua, W. Ma, Z. Dai, X. Huang, and H. Gu, J. Alloys Compd. 599, 15 (2014).

    Article  Google Scholar 

  27. J.I. Langford and A.J.C. Wilson, J. Appl. Cryst. 11, 103 (1978).

    Google Scholar 

  28. A.D. McNaught, A.Wilkinson, IUPAC. Compendium of Chemical Terminology, 2nd ed. (Blackwell Scientific, Oxford, 1997) p. 1412.

  29. H. Kish, Angew. Chem. 49, 9588 (2010).

    Article  Google Scholar 

  30. E.M. Seftel, M. Niarchos, C. Mitropoulos, M. Mertens, E.F. Vansant, and P. Cool, Catal. Today 252, 122 (2015).

    Google Scholar 

  31. B. Li and S.L. Yuan, Ceram. Int. 40, 11563 (2014).

    Google Scholar 

  32. S.M. Auerbach, K.A. Carrado, and P.K. Dutta, Handbook of Layered Materials, 1st ed. (New York: Marcel Dekker, 2004), p. 10.

    Google Scholar 

  33. A.V. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, and C.J. Powell, NIST X-Ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1 (2015). http://srdata.nist.gov/. Accessed Jan 03 2017

  34. E.M. Seftel, M. Mertens, and P. Cool, Appl. Catal. B: Environ. 134–135, 283 (2013).

    Google Scholar 

  35. J.M. Hermann, Catal. Today 53, 116 (1999).

    Article  Google Scholar 

  36. M. Lewandowski and D.F. Ollis, Appl. Catal. B Environ. 45, 230 (2003).

    Article  Google Scholar 

  37. J. Ming-Gang, S. Guangxu, W. Jiajun, M. Qiangqiang, and L. Wanzhen, Appl. Mater. Interfaces 6, 12886 (2014).

    Google Scholar 

  38. N. Bayal and P. Jeevanandam, Ceram. Int. 10-A, 15463 (2014).

    Article  Google Scholar 

  39. S. Ahmed, M. Rasul, W. Martens, R. Brown, and M. Hashib, Desalination 261, 12 (2010).

    Article  Google Scholar 

  40. M.A. Ulibarri, I. Pavlovic, C. Barriga, and J. Cornejo, Appl. Clay Sci. 18, 24 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Martínez-Gallegos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras-Ruiz, J.C., Martínez-Gallegos, S., Ordoñez, E. et al. Synthesis of Hydroxide–TiO2 Compounds with Photocatalytic Activity for Degradation of Phenol. J. Electron. Mater. 46, 1658–1668 (2017). https://doi.org/10.1007/s11664-016-5209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5209-7

Keywords

Navigation