Skip to main content
Log in

Preparation of three-dimensional macroporous–mesoporous lithium ion sieve with high Li+ adsorption capacity

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A three-dimensionally macroporous–mesoporous lithium ion sieve (3DM-H4Ti5O12) was transformed from 3DM-Li4Ti5O12 through washing with HCl solution, which was synthesized by a combination of hydrothermal and low-temperature calcination (600 °C) treatment, using polystyrene microarray as hard-template, and titanium isopropoxide and lithium acetate as co-precursors. The influence of HCl concentration and temperature on the deintercalation rate of Li and Ti from Li4Ti5O12 was specifically explored to maximize the extraction ratio of Li/Ti. The acceleration of Li extraction and insertion in a porous structure was verified using nonporous Li4Ti5O12 as a control. 3DM-H4Ti5O12 showed superior Li+ adsorption performance (5.51 mmol/g) compared with its nonporous counterpart (1.12 mmol/g), which was ascribed to the reduced Li+ mass transfer resistance in the highly interconnected porous channel. The ion selectivity of the 3DM-H4Ti5O12 lithium ion sieve followed the order of Li+ > Na+ ~ Ca2+ > K+ > Mg2+. The adsorption performance could be maintained after six cycles. The high adsorption capacity, excellent selectivity, and good recyclability demonstrate the prosperous potential application of 3DM-H4Ti5O12.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Qian, L.K. Tang, M. Wagemaker, Y.B. He, D.Q. Liu, H. Li, R.Y. Shi, B.H. Li, F.Y. Kang, Adv. Sci. 1700205, 7 (2017)

    Google Scholar 

  2. L. Wang, W. Ma, M. Han, C.G. Meng, Acta Chim. Sin. Chin. Ed. 65, 1135 (2007)

    CAS  Google Scholar 

  3. S.A. Hong, A. Nugroho, S.J. Kim, J. Kim, K.Y. Chung, B.W. Kang, Res. Chem. Intermed. 429, 37 (2011)

    Google Scholar 

  4. D.Z. Lin, China Saf. Sci. J. 72, 14 (2004)

    Google Scholar 

  5. Y. Guo, Y.L. Ying, Y.Y. Mao, X.S. Peng, B.L. Chen, Angew. Chem. Int. Ed. 15120, 55 (2016)

    Google Scholar 

  6. S.Y. Sun, F. Ye, X.F. Song, Y.Z. Li, J. Wang, J.G. Yu, Chin. J. Inorg. Chem. 439, 27 (2011)

    Google Scholar 

  7. J.M. Nan, D.M. Han, X.X. Zuo, J. Power Sources 278, 152 (2005)

    Google Scholar 

  8. H.B. Li, L.D. Zou, Desalination 62, 275 (2011)

    Article  Google Scholar 

  9. J.W. An, D.J. Kang, K.T. Tran, M.J. Kim, Hydrometalurgy 64, 117 (2012)

    Google Scholar 

  10. X.H. Li, C.J. Zhang, S.N. Zhang, J.X. Li, Desalination 26, 369 (2015)

    Google Scholar 

  11. X.Y. Guo, X. Cao, G.Y. Huang, Q.H. Tian, H.Y. Sun, J. Environ. Manag. 84, 198 (2017)

    Google Scholar 

  12. Q.H. Zhang, S.P. Li, S.Y. Sun, X.S. Yin, J.G. Yu, Chem. Eng. Sci. 169, 65 (2010)

    Google Scholar 

  13. Y.E. Zhang, H. Wang, B. Wang, Res. Bull. 1411, 37 (2002)

    Google Scholar 

  14. C. Özgür, Solid State Ionics 1425, 181 (2010)

    Google Scholar 

  15. J.L. Xiao, S.Y. Sun, P. Li, Ind. Eng. Chem. Res. 11967, 52 (2013)

    Google Scholar 

  16. K. Hideki, M. Osamu, K. Yoshio, J. Electroanal. Chem. 77, 559 (2003)

    Google Scholar 

  17. D.Q. Dong, F.B. Zhang, G.L., Zhang. Acta Phys. Chim. Sin. 950, 23 (2007)

    Google Scholar 

  18. L.W. Ma, B.Z. Chen, Y. Chen, X.C. Shi, Microporous Mesoporous Mater. 147, 142 (2011)

    Google Scholar 

  19. Q.H. Zhang, S.P. Li, S.Y. Sun, Chem. Eng. Sci. 165, 65 (2010)

    Article  Google Scholar 

  20. X. Xu, Y.M. Chen, P.Y. Wan, K. Gasem, K.Y. Wang, T. He, H. Adidharma, M.H. Fan, Prog. Mater Sci. 276, 84 (2016)

    Google Scholar 

  21. S.W. Woo, K. Dokko, K. Kanamura, Electrochim. Acta 79, 53 (2007)

    Google Scholar 

  22. D.Y. Qi, L.J. Lu, L.Z. Wang, J.L. Zhang, J. Am. Chem. Soc. 9886, 136 (2014)

    Google Scholar 

  23. S. Bach, J.P. Pereira-Ramos, N. Baffier, J. Powder Sources 273, 81 (1999)

    Google Scholar 

  24. L.A. Limjuco, G.M. Nisola, C.P. Lawagon, S.P. Lee, J.G. Seo, H. Kim, W.J. Chung, Colloids Surf. A 267, 504 (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21673073, 21677048, U1407102 and 21377038), the National Basic Research Program of China (973 Program, 2013CB632403), the Science and Technology Commission of Shanghai Municipality (14230710500, 14ZR1410700 and 16JC1401400) and the Fundamental Research Funds for the Central Universities, PetroChina Innovation Foundation (2015D-5006-0402), the Fundamental Research Funds for the Central Universities (222201717003) and Collaborative Innovation Fund of Shanghai Institute of Technology (XTCX2015-9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinlong Zhang or Lingzhi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Gan, K., Lu, D. et al. Preparation of three-dimensional macroporous–mesoporous lithium ion sieve with high Li+ adsorption capacity. Res Chem Intermed 44, 1105–1117 (2018). https://doi.org/10.1007/s11164-017-3154-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3154-6

Keywords

Navigation