Skip to main content

Advertisement

Log in

Expected and paradoxical effects of obesity on cancer treatment response

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Obesity, whose prevalence is pandemic and continuing to increase, is a major preventable and modifiable risk factor for diabetes and cardiovascular diseases, as well as for cancer. Furthermore, epidemiological studies have shown that obesity is a negative independent prognostic factor for several oncological outcomes, including overall and cancer-specific survival, for several site-specific cancers as well as for all cancers combined. Yet, a recently growing body of evidence suggests that sometimes overweight and obesity may associate with better outcomes, and that immunotherapy may show improved response among obese patients compared with patients with a normal weight. The so-called ‘obesity paradox’ has been reported in several advanced cancer as well as in other diseases, albeit the mechanisms behind this unexpected relationship are still not clear. Aim of this review is to explore the expected as well as the paradoxical relationship between obesity and cancer prognosis, with a particular emphasis on the effects of cancer therapies in obese people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. WHO. Obesity and overweight. 2018 August 27, 2019 ]; Available from: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight.

  2. Pearson-Stuttard J, Zhou B, Kontis V, Bentham J, Gunter MJ, Ezzati M. Worldwide burden of cancer attributable to diabetes and high body-mass index: a comparative risk assessment. Lancet Diabetes Endocrinol. 2018;6(6):e6–e15.

    PubMed  PubMed Central  Google Scholar 

  3. Yang L, Drake BF, Colditz GA. Obesity and other cancers. J Clin Oncol. 2016;34(35):4231–7.

    PubMed  Google Scholar 

  4. Dignam JJ, Polite BN, Yothers G, Raich P, Colangelo L, O'Connell MJ, et al. Body mass index and outcomes in patients who receive adjuvant chemotherapy for colon cancer. J Natl Cancer Inst. 2006;98(22):1647–54.

    PubMed  Google Scholar 

  5. Meyerhardt JA, Niedzwiecki D, Hollis D, Saltz LB, Mayer RJ, Nelson H, et al. Impact of body mass index and weight change after treatment on cancer recurrence and survival in patients with stage III colon cancer: findings from Cancer and leukemia group B 89803. J Clin Oncol. 2008;26(25):4109–15.

    PubMed  PubMed Central  Google Scholar 

  6. Doleman B, Mills KT, Lim S, Zelhart MD, Gagliardi G. Body mass index and colorectal cancer prognosis: a systematic review and meta-analysis. Tech Coloproctol. 2016;20(8):517–35.

    CAS  PubMed  Google Scholar 

  7. Daniel CR, Shu X, Ye Y, Gu J, Raju GS, Kopetz S, et al. Severe obesity prior to diagnosis limits survival in colorectal cancer patients evaluated at a large cancer Centre. Br J Cancer. 2016;114(1):103–9.

    CAS  PubMed  Google Scholar 

  8. Almasaudi AS, et al. The relationship between body mass index and short term postoperative outcomes in patients undergoing potentially curative surgery for colorectal cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2018;121:68–73.

    PubMed  Google Scholar 

  9. Majumder K, et al. Premorbid Obesity and Mortality in Patients With Pancreatic Cancer: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol. 2016;14(3):355–368e quiz e32.

    PubMed  Google Scholar 

  10. Protani M, Coory M, Martin JH. Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res Treat. 2010;123(3):627–35.

    PubMed  Google Scholar 

  11. Chan DS, et al. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol. 2014;25(10):1901–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Robinson PJ, Bell RJ, Davis SR. Obesity is associated with a poorer prognosis in women with hormone receptor positive breast cancer. Maturitas. 2014;79(3):279–86.

    CAS  PubMed  Google Scholar 

  13. Ioannides SJ, Barlow PL, Elwood JM, Porter D. Effect of obesity on aromatase inhibitor efficacy in postmenopausal, hormone receptor-positive breast cancer: a systematic review. Breast Cancer Res Treat. 2014;147(2):237–48.

    CAS  PubMed  Google Scholar 

  14. Jiralerspong S, Goodwin PJ. Obesity and breast Cancer prognosis: evidence, challenges, and opportunities. J Clin Oncol. 2016;34(35):4203–16.

    CAS  PubMed  Google Scholar 

  15. Chung IY, Lee JW, Lee JS, Park YR, Min YH, Lee Y, et al. Interaction between body mass index and hormone-receptor status as a prognostic factor in lymph-node-positive breast cancer. PLoS One. 2017;12(3):e0170311.

    PubMed  PubMed Central  Google Scholar 

  16. Sun L, Zhu Y, Qian Q, Tang L. Body mass index and prognosis of breast cancer: an analysis by menstruation status when breast cancer diagnosis. Medicine (Baltimore). 2018;97(26):e11220.

    Google Scholar 

  17. Zhang M, Zhang X, Liu J, Su W, Li J, Zhang S, et al. Body mass index and diabetes are important prognostic signatures for bilateral breast cancer prognosis. J Cell Biochem. 2019;120(5):7363–74.

    CAS  Google Scholar 

  18. Purcell SA, Elliott SA, Kroenke CH, Sawyer MB, Prado CM. Impact of body weight and body composition on ovarian Cancer prognosis. Curr Oncol Rep. 2016;18(2):8.

    PubMed  Google Scholar 

  19. Fader AN, Arriba LN, Frasure HE, von Gruenigen VE. Endometrial cancer and obesity: epidemiology, biomarkers, prevention and survivorship. Gynecol Oncol. 2009;114(1):121–7.

    PubMed  Google Scholar 

  20. Parker AS, Lohse CM, Cheville JC, Thiel DD, Leibovich BC, Blute ML. Greater body mass index is associated with better pathologic features and improved outcome among patients treated surgically for clear cell renal cell carcinoma. Urology. 2006;68(4):741–6.

    PubMed  Google Scholar 

  21. Choi Y, Park B, Jeong BC, Seo SI, Jeon SS, Choi HY, et al. Body mass index and survival in patients with renal cell carcinoma: a clinical-based cohort and meta-analysis. Int J Cancer. 2013;132(3):625–34.

    CAS  PubMed  Google Scholar 

  22. Azvolinsky A. Cancer prognosis: role of BMI and fat tissue. J Natl Cancer Inst. 2014;106(6):dju177.

    PubMed  Google Scholar 

  23. Zheng Y, Bao L, Chen J, Pan Y, Wang Q, Chen L, et al. The influence of sex on the prognostic value of body mass index in non-metastasis renal cell carcinoma. Cancer Manag Res. 2019;11:3869–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Westhoff E, Witjes JA, Fleshner NE, Lerner SP, Shariat SF, Steineck G, et al. Body mass index, diet-related factors, and bladder Cancer prognosis: a systematic review and meta-analysis. Bladder Cancer. 2018;4(1):91–112.

    PubMed  PubMed Central  Google Scholar 

  25. Ferro M, Vartolomei MD, Russo GI, Cantiello F, Farhan ARA, Terracciano D, et al. An increased body mass index is associated with a worse prognosis in patients administered BCG immunotherapy for T1 bladder cancer. World J Urol. 2019;37(3):507–14.

    CAS  PubMed  Google Scholar 

  26. Ma J, Li H, Giovannucci E, Mucci L, Qiu W, Nguyen PL, et al. Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis. Lancet Oncol. 2008;9(11):1039–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Abufaraj M, Mari A, Mansy K, Sievert KD. Obesity and its implications on oncological urological surgery. Curr Opin Urol. 2017;27(5):446–55.

    PubMed  Google Scholar 

  28. Deneuve S, Tan HK, Eghiaian A, Temam S. Management and outcome of head and neck squamous cell carcinomas in obese patients. Oral Oncol. 2011;47(7):631–5.

    CAS  PubMed  Google Scholar 

  29. McRackan TR, Watkins JM, Herrin AE, Garrett-Mayer EM, Sharma AK, Day TA, et al. Effect of body mass index on chemoradiation outcomes in head and neck cancer. Laryngoscope. 2008;118(7):1180–5.

    PubMed  Google Scholar 

  30. Arthur AE, Peterson KE, Rozek LS, Taylor JM, Light E, Chepeha DB, et al. Pretreatment dietary patterns, weight status, and head and neck squamous cell carcinoma prognosis. Am J Clin Nutr. 2013;97(2):360–8.

    CAS  PubMed  Google Scholar 

  31. Hollander D, Kampman E, van Herpen CM. Pretreatment body mass index and head and neck cancer outcome: a review of the literature. Crit Rev Oncol Hematol. 2015;96(2):328–38.

    PubMed  Google Scholar 

  32. Ferguson MK, et al. Association of body mass index and outcomes after major lung resection. Eur J Cardiothorac Surg. 2014;45(4):e94–9 discussion e99.

    PubMed  PubMed Central  Google Scholar 

  33. Gupta A, Majumder K, Arora N, Mayo HG, Singh PP, Beg MS, et al. Premorbid body mass index and mortality in patients with lung cancer: a systematic review and meta-analysis. Lung Cancer. 2016;102:49–59.

    PubMed  Google Scholar 

  34. Lam VK, Bentzen SM, Mohindra P, Nichols EM, Bhooshan N, Vyfhuis M, et al. Obesity is associated with long-term improved survival in definitively treated locally advanced non-small cell lung cancer (NSCLC). Lung Cancer. 2017;104:52–7.

    PubMed  Google Scholar 

  35. Zhang X, Liu Y, Shao H, Zheng X. Obesity paradox in lung Cancer prognosis: evolving biological insights and clinical implications. J Thorac Oncol. 2017;12(10):1478–88.

    PubMed  Google Scholar 

  36. Wallin A, Larsson SC. Body mass index and risk of multiple myeloma: a meta-analysis of prospective studies. Eur J Cancer. 2011;47(11):1606–15.

    PubMed  Google Scholar 

  37. Castillo JJ, Reagan JL, Ingham RR, Furman M, Dalia S, Merhi B, et al. Obesity but not overweight increases the incidence and mortality of leukemia in adults: a meta-analysis of prospective cohort studies. Leuk Res. 2012;36(7):868–75.

    PubMed  Google Scholar 

  38. Breccia M, Mazzarella L, Bagnardi V, Disalvatore D, Loglisci G, Cimino G, et al. Increased BMI correlates with higher risk of disease relapse and differentiation syndrome in patients with acute promyelocytic leukemia treated with the AIDA protocols. Blood. 2012;119(1):49–54.

    CAS  PubMed  Google Scholar 

  39. Teras LR, Kitahara CM, Birmann BM, Hartge PA, Wang SS, Robien K, et al. Body size and multiple myeloma mortality: a pooled analysis of 20 prospective studies. Br J Haematol. 2014;166(5):667–76.

    PubMed  PubMed Central  Google Scholar 

  40. Castillo JJ, Mulkey F, Geyer S, Kolitz JE, Blum W, Powell BL, et al. Relationship between obesity and clinical outcome in adults with acute myeloid leukemia: a pooled analysis from four CALGB (alliance) clinical trials. Am J Hematol. 2016;91(2):199–204.

    PubMed  Google Scholar 

  41. Amankwah EK, Saenz AM, Hale GA, Brown PA. Association between body mass index at diagnosis and pediatric leukemia mortality and relapse: a systematic review and meta-analysis. Leuk Lymphoma. 2016;57(5):1140–8.

    PubMed  Google Scholar 

  42. Carson KR, Bartlett NL, McDonald JR, Luo S, Zeringue A, Liu J, et al. Increased body mass index is associated with improved survival in United States veterans with diffuse large B-cell lymphoma. J Clin Oncol. 2012;30(26):3217–22.

    PubMed  PubMed Central  Google Scholar 

  43. Weiss L, Melchardt T, Habringer S, Boekstegers A, Hufnagl C, Neureiter D, et al. Increased body mass index is associated with improved overall survival in diffuse large B-cell lymphoma. Ann Oncol. 2014;25(1):171–6.

    CAS  PubMed  Google Scholar 

  44. Brunner AM, Sadrzadeh H, Feng Y, Drapkin BJ, Ballen KK, Attar EC, et al. Association between baseline body mass index and overall survival among patients over age 60 with acute myeloid leukemia. Am J Hematol. 2013;88(8):642–6.

    PubMed  PubMed Central  Google Scholar 

  45. McQuade JL, et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol. 2018;19(3):310–22.

    PubMed  PubMed Central  Google Scholar 

  46. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.

    PubMed  Google Scholar 

  47. Batty GD, Shipley MJ, Jarrett RJ, Breeze E, Marmot MG, Smith GD. Obesity and overweight in relation to organ-specific cancer mortality in London (UK): findings from the original Whitehall study. Int J Obes. 2005;29(10):1267–74.

    CAS  Google Scholar 

  48. Parekh N, Okada T, Lu-Yao GL. Obesity, insulin resistance, and cancer prognosis: implications for practice for providing care among cancer survivors. J Am Diet Assoc. 2009;109(8):1346–53.

    PubMed  PubMed Central  Google Scholar 

  49. Mapp S, Sandhu G, Carrington C, Hennig S. A systematic review of treatment outcomes with weight-based dosing of chemotherapy in obese adult patients with acute leukemia or lymphoma. Leuk Lymphoma. 2016;57(4):981–4.

    PubMed  Google Scholar 

  50. Hourdequin KC, Schpero WL, McKenna DR, Piazik BL, Larson RJ. Toxic effect of chemotherapy dosing using actual body weight in obese versus normal-weight patients: a systematic review and meta-analysis. Ann Oncol. 2013;24(12):2952–62.

    CAS  PubMed  Google Scholar 

  51. Griggs JJ, Mangu PB, Anderson H, Balaban EP, Dignam JJ, Hryniuk WM, et al. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2012;30(13):1553–61.

    PubMed  Google Scholar 

  52. Lorincz AM, Sukumar S. Molecular links between obesity and breast cancer. Endocr Relat Cancer. 2006;13(2):279–92.

    CAS  PubMed  Google Scholar 

  53. Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM. Obesity and adverse breast cancer risk and outcome: mechanistic insights and strategies for intervention. CA Cancer J Clin. 2017;67(5):378–97.

    PubMed  PubMed Central  Google Scholar 

  54. Trestini I, Carbognin L, Bonaiuto C, Tortora G, Bria E. The obesity paradox in cancer: clinical insights and perspectives. Eat Weight Disord. 2018;23(2):185–93.

    PubMed  Google Scholar 

  55. Murphy WJ, Longo DL. The surprisingly positive association between obesity and Cancer immunotherapy efficacy. JAMA. 2019;321(13):1247–8.

    PubMed  Google Scholar 

  56. Chang HH, Eibl G. Obesity-induced adipose tissue inflammation as a strong promotional factor for pancreatic ductal adenocarcinoma. Cell. 2019;8(7):673.

    CAS  Google Scholar 

  57. Parikh AM, Coletta AM, Yu ZH, Rauch GM, Cheung JP, Court LE, et al. Development and validation of a rapid and robust method to determine visceral adipose tissue volume using computed tomography images. PLoS One. 2017;12(8):e0183515.

    PubMed  PubMed Central  Google Scholar 

  58. Goossens GH. The metabolic phenotype in obesity: fat mass, body fat distribution, and adipose tissue function. Obes Facts. 2017;10(3):207–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Arcidiacono B, et al. Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms. Exp Diabetes Res. 2012;2012:789174.

    PubMed  PubMed Central  Google Scholar 

  60. Hursting SD, Berger NA. Energy balance, host-related factors, and cancer progression. J Clin Oncol. 2010;28(26):4058–65.

    PubMed  PubMed Central  Google Scholar 

  61. Tsujimoto T, Kajio H, Sugiyama T. Association between hyperinsulinemia and increased risk of cancer death in nonobese and obese people: a population-based observational study. Int J Cancer. 2017;141(1):102–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chettouh H, Fartoux L, Aoudjehane L, Wendum D, Clapéron A, Chrétien Y, et al. Mitogenic insulin receptor-a is overexpressed in human hepatocellular carcinoma due to EGFR-mediated dysregulation of RNA splicing factors. Cancer Res. 2013;73(13):3974–86.

    CAS  PubMed  Google Scholar 

  63. Mosthaf L, Grako K, Dull TJ, Coussens L, Ullrich A, McClain DA. Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J. 1990;9(8):2409–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7(2):85–96.

    CAS  PubMed  Google Scholar 

  65. Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer--mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol. 2014;10(8):455–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Crowe FL, Key TJ, Allen NE, Appleby PN, Overvad K, Grønbæk H, et al. A cross-sectional analysis of the associations between adult height, BMI and serum concentrations of IGF-I and IGFBP-1 -2 and −3 in the European prospective investigation into Cancer and nutrition (EPIC). Ann Hum Biol. 2011;38(2):194–202.

    PubMed  Google Scholar 

  67. Johnson JA, et al. Diabetes and cancer (1): evaluating the temporal relationship between type 2 diabetes and cancer incidence. Diabetologia. 2012;55(6):1607–18.

    CAS  PubMed  Google Scholar 

  68. Asano T, Yao Y, Shin S, McCubrey J, Abbruzzese JL, Reddy SAG. Insulin receptor substrate is a mediator of phosphoinositide 3-kinase activation in quiescent pancreatic cancer cells. Cancer Res. 2005;65(20):9164–8.

    CAS  PubMed  Google Scholar 

  69. Beauchamp EM, Platanias LC. The evolution of the TOR pathway and its role in cancer. Oncogene. 2013;32(34):3923–32.

    CAS  PubMed  Google Scholar 

  70. Dibble CC, Manning BD. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol. 2013;15(6):555–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature. 2010;466(7308):869–73.

    CAS  PubMed  Google Scholar 

  72. Rozengurt E, Sinnett-Smith J, Kisfalvi K. Crosstalk between insulin/insulin-like growth factor-1 receptors and G protein-coupled receptor signaling systems: a novel target for the antidiabetic drug metformin in pancreatic cancer. Clin Cancer Res. 2010;16(9):2505–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rozengurt E. Mechanistic target of rapamycin (mTOR): a point of convergence in the action of insulin/IGF-1 and G protein-coupled receptor agonists in pancreatic cancer cells. Front Physiol. 2014;5:357.

    PubMed  PubMed Central  Google Scholar 

  74. Cowey S, Hardy RW. The metabolic syndrome: a high-risk state for cancer? Am J Pathol. 2006;169(5):1505–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pickup JC, Mattock MB, Chusney GD, Burt D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia. 1997;40(11):1286–92.

    CAS  PubMed  Google Scholar 

  76. Herder C, Brunner EJ, Rathmann W, Strassburger K, Tabak AG, Schloot NC, et al. Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: the Whitehall II study. Diabetes Care. 2009;32(3):421–3.

    PubMed  PubMed Central  Google Scholar 

  77. Hirabara SM, et al. Molecular targets related to inflammation and insulin resistance and potential interventions. J Biomed Biotechnol. 2012;2012:379024.

    PubMed  PubMed Central  Google Scholar 

  78. Haruta T, Uno T, Kawahara J, Takano A, Egawa K, Sharma PM, et al. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol. 2000;14(6):783–94.

    CAS  PubMed  Google Scholar 

  79. Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep. 2012;2:799.

    PubMed  PubMed Central  Google Scholar 

  80. Allin KH, Bojesen SE, Nordestgaard BG. Baseline C-reactive protein is associated with incident cancer and survival in patients with cancer. J Clin Oncol. 2009;27(13):2217–24.

    CAS  PubMed  Google Scholar 

  81. Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord. 2002;26(11):1407–33.

    CAS  PubMed  Google Scholar 

  82. Tessitore L, Vizio B, Jenkins O, de Stefano I, Ritossa C, Argiles JM, et al. Leptin expression in colorectal and breast cancer patients. Int J Mol Med. 2000;5(4):421–6.

    CAS  PubMed  Google Scholar 

  83. Divella R, de Luca R, Abbate I, Naglieri E, Daniele A. Obesity and cancer: the role of adipose tissue and adipo-cytokines-induced chronic inflammation. J Cancer. 2016;7(15):2346–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Booth A, Magnuson A, Fouts J, Foster M. Adipose tissue, obesity and adipokines: role in cancer promotion. Horm Mol Biol Clin Invest. 2015;21(1):57–74.

    CAS  Google Scholar 

  85. Duncan BB, Schmidt MI, Pankow JS, Bang H, Couper D, Ballantyne CM, et al. Adiponectin and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2004;53(9):2473–8.

    CAS  PubMed  Google Scholar 

  86. Barb D, Williams CJ, Neuwirth AK, Mantzoros CS. Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence. Am J Clin Nutr. 2007;86(3):s858–66.

    PubMed  Google Scholar 

  87. Lu W, et al. Low circulating total adiponectin, especially its non-high-molecular weight fraction, represents a promising risk factor for colorectal cancer: a meta-analysis. Onco Targets Ther. 2018;4(11):2519–31.

    Google Scholar 

  88. Katira A, Tan PH. Evolving role of Adiponectin in Cancer-controversies and update. Cancer Biol Med. 2016;13(1):101–19.

    PubMed  PubMed Central  Google Scholar 

  89. Yoon YS, Kwon AR, Lee YK, Oh SW. Circulating Adipokines and risk of obesity related cancers: a systematic review and meta-analysis. Obes Res Clin Pract. 2019;13(4):329–39.

    PubMed  Google Scholar 

  90. Shrestha A, Nepal S, Kim MJ, Chang JH, Kim SH, Jeong GS, et al. Critical role of AMPK/FoxO3A Axis in globular Adiponectin-induced cell cycle arrest and apoptosis in Cancer cells. J Cell Physiol. 2016;231(2):357–69.

    CAS  PubMed  Google Scholar 

  91. Kim K, Kim JK, Han SH, Lim JS, Kim KI, Cho DH, et al. Adiponectin is a negative regulator of NK cell cytotoxicity. J Immunol. 2006;176(10):5958–64.

    CAS  PubMed  Google Scholar 

  92. Degawa-Yamauchi M, Bovenkerk JE, Juliar BE, Watson W, Kerr K, Jones R, et al. Serum resistin (FIZZ3) protein is increased in obese humans. J Clin Endocrinol Metab. 2003;88(11):5452–5.

    CAS  PubMed  Google Scholar 

  93. Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab. 2013;18:29–42.

    CAS  PubMed  Google Scholar 

  94. Gong WJ, Zheng W, Xiao L, Tan LM, Song J, Li XP, et al. Circulating resistin levels and obesity-related cancer risk: a meta-analysis. Oncotarget. 2016;7:57694–704.

    PubMed  PubMed Central  Google Scholar 

  95. Adeghate E. Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Curr Med Chem. 2008;15(18):1851–562.

    CAS  PubMed  Google Scholar 

  96. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol. 2007;178:1748–58.

    CAS  PubMed  Google Scholar 

  97. Goralski KB, Jackson AE, McKeown BT, Sinal CJ. More than an Adipokine: the complex roles of Chemerin signaling in Cancer. Int J Mol Sci. 2019;20(19):4778.

    CAS  PubMed Central  Google Scholar 

  98. Watanabe T, et al. Adipose tissue-derived Omentin-1 function and regulation. Compr Physiol. 2017;7(3):765–81.

    PubMed  Google Scholar 

  99. de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56(6):1655–61.

    PubMed  Google Scholar 

  100. Kawashima K, Maeda K, Saigo C, Kito Y, Yoshida K, Takeuchi T. Adiponectin and intelectin-1: important adipokine players in obesity-related colorectal carcinogenesis. Int J Mol Sci. 2017;18(4):866.

    PubMed Central  Google Scholar 

  101. Barchetta I, Cimini FA, Ciccarelli G, Baroni MG, Cavallo MG. Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation. J Endocrinol Investig. 2019;42(11):1257–72.

    CAS  Google Scholar 

  102. Wang B, Wood IS, Trayhurn P. Hypoxia induces leptin gene expression and secretion in human preadipocytes: differential effects of hypoxia on adipokine expression by preadipocytes. J Endocrinol. 2008;198(1):127–34.

    CAS  PubMed  Google Scholar 

  103. Rogers CJ, Prabhu KS, Vijay-Kumar M. The microbiome and obesity-an established risk for certain types of cancer. Cancer J. 2014;20(3):176–80.

    CAS  PubMed  Google Scholar 

  104. Keku TO, Dulal S, Deveaux A, Jovov B, Han X. The gastrointestinal microbiota and colorectal cancer. Am J Physiol Gastrointest Liver Physiol. 2015;308(5):G351–63.

    CAS  PubMed  Google Scholar 

  105. Toumazi D, Constantinou C. A fragile balance: the important role of the intestinal microbiota in the prevention and management of colorectal Cancer. Oncology. 2020;98:1–10. https://doi.org/10.1159/000507959.

    Article  CAS  Google Scholar 

  106. Cani PD, Jordan BF. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2018;15(11):671–82.

    CAS  PubMed  Google Scholar 

  107. Ohtani N, Yoshimoto S, Hara E. Obesity and cancer: a gut microbial connection. Cancer Res. 2014;74(7):1885–9.

    CAS  PubMed  Google Scholar 

  108. Loo TM, Kamachi F, Watanabe Y, Yoshimoto S, Kanda H, Arai Y, et al. Gut microbiota promotes obesity-associated liver Cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov. 2017;7(5):522–38.

    CAS  PubMed  Google Scholar 

  109. McQuade JL, Ologun GO, Arora R, Wargo JA. Gut microbiome modulation via fecal microbiota transplant to augment immunotherapy in patients with melanoma or other cancers. Curr Oncol Rep. 2020;22(7):74.

    PubMed  PubMed Central  Google Scholar 

  110. Aindelis G, Chlichlia K. Modulation of anti-tumour immune responses by probiotic bacteria. Vaccines (Basel). 2020;8(2):E329.

    Google Scholar 

  111. Dai Z, Zhang J, Wu Q, Fang H, Shi C, Li Z, et al. Intestinal microbiota: a new force in cancer immunotherapy. Cell Commun Signal. 2020;18(1):90.

    PubMed  PubMed Central  Google Scholar 

  112. Fong W, Li Q, Yu J. Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene. 2020;39(26):4925–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bhardwaj P, Au CMC, Benito-Martin A, Ladumor H, Oshchepkova S, Moges R, et al. Estrogens and breast cancer: mechanisms involved in obesity-related development, growth and progression. J Steroid Biochem Mol Biol. 2019;189:161–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Vicennati V, Garelli S, Rinaldi E, Rosetti S, Zavatta G, Pagotto U, et al. Obesity-related proliferative diseases: the interaction between adipose tissue and estrogens in post-menopausal women. Horm Mol Biol Clin Invest. 2015;21(1):75–87.

    CAS  Google Scholar 

  115. Gerard C, Brown KA. Obesity and breast cancer - role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue. Mol Cell Endocrinol. 2018;466:15–30.

    CAS  PubMed  Google Scholar 

  116. Wang X, Simpson ER, Brown KA. Aromatase overexpression in dysfunctional adipose tissue links obesity to postmenopausal breast cancer. J Steroid Biochem Mol Biol. 2015;153:35–44.

    CAS  PubMed  Google Scholar 

  117. Gucalp A, Iyengar NM, Hudis CA, Dannenberg AJ. Targeting obesity-related adipose tissue dysfunction to prevent cancer development and progression. Semin Oncol. 2016;43(1):154–60.

    CAS  PubMed  Google Scholar 

  118. Zahid H, Simpson ER, Brown KA. Inflammation, dysregulated metabolism and aromatase in obesity and breast cancer. Curr Opin Pharmacol. 2016;31:90–6.

    CAS  PubMed  Google Scholar 

  119. Frei E 3rd. And G.P. Canellos, Dose: a critical factor in cancer chemotherapy. Am J Med. 1980;69(4):585–94.

    PubMed  Google Scholar 

  120. Lyman GH, Sparreboom A. Chemotherapy dosing in overweight and obese patients with cancer. Nat Rev Clin Oncol. 2013;10(8):451–9.

    CAS  PubMed  Google Scholar 

  121. Griggs JJ, Sorbero ME, Lyman GH. Undertreatment of obese women receiving breast cancer chemotherapy. Arch Intern Med. 2005;165(11):1267–73.

    PubMed  Google Scholar 

  122. Litton JK, Gonzalez-Angulo AM, Warneke CL, Buzdar AU, Kau SW, Bondy M, et al. Relationship between obesity and pathologic response to neoadjuvant chemotherapy among women with operable breast cancer. J Clin Oncol. 2008;26(25):4072–7.

    PubMed  PubMed Central  Google Scholar 

  123. Del Fabbro E, et al. The relationship between body composition and response to neoadjuvant chemotherapy in women with operable breast cancer. Oncologist. 2012;17(10):1240–5.

    PubMed  PubMed Central  Google Scholar 

  124. Sinicrope FA, Foster NR, Yothers G, Benson A, Seitz JF, Labianca R, et al. Body mass index at diagnosis and survival among colon cancer patients enrolled in clinical trials of adjuvant chemotherapy. Cancer. 2013;119(8):1528–36.

    CAS  PubMed  Google Scholar 

  125. Sepesi B, Gold KA, Correa AM, Heymach JV, Vaporciyan AA, Roszik J, et al. The influence of body mass index on overall survival following surgical resection of non-small cell lung Cancer. J Thorac Oncol. 2017;12(8):1280–7.

    PubMed  PubMed Central  Google Scholar 

  126. Abdel-Rahman O. Effect of body mass index on 5-FU-based chemotherapy toxicity and efficacy among patients with metastatic colorectal Cancer; a pooled analysis of 5 randomized trials. Clin Colorectal Cancer. 2019;18:110–115.e2.

    PubMed  Google Scholar 

  127. Ewertz M, Jensen MB, Gunnarsdóttir KÁ, Højris I, Jakobsen EH, Nielsen D, et al. Effect of obesity on prognosis after early-stage breast cancer. J Clin Oncol. 2011;29(1):25–31.

    PubMed  Google Scholar 

  128. Chlebowski RT, Aiello E, McTiernan A. Weight loss in breast cancer patient management. J Clin Oncol. 2002;20(4):1128–43.

    PubMed  Google Scholar 

  129. Poortman J, Thijssen JH, de Waard F. Plasma oestrone, oestradiol and androstenedione levels in post-menopausal women: relation to body weight and height. Maturitas. 1981;3(1):65–71.

    CAS  PubMed  Google Scholar 

  130. Goodwin PJ, Pritchard KI. Obesity and hormone therapy in breast cancer: an unfinished puzzle. J Clin Oncol. 2010;28(21):3405–7.

    CAS  PubMed  Google Scholar 

  131. Cleary MP, Grossmann ME. Minireview: obesity and breast cancer: the estrogen connection. Endocrinology. 2009;150(6):2537–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Renehan AG, Roberts DL, Dive C. Obesity and cancer: pathophysiological and biological mechanisms. Arch Physiol Biochem. 2008;114(1):71–83.

    CAS  PubMed  Google Scholar 

  133. Sestak I, Distler W, Forbes JF, Dowsett M, Howell A, Cuzick J. Effect of body mass index on recurrences in tamoxifen and anastrozole treated women: an exploratory analysis from the ATAC trial. J Clin Oncol. 2010;28(21):3411–5.

    CAS  PubMed  Google Scholar 

  134. Ewertz M, Gray KP, Regan MM, Ejlertsen B, Price KN, Thürlimann B, et al. Obesity and risk of recurrence or death after adjuvant endocrine therapy with letrozole or tamoxifen in the breast international group 1-98 trial. J Clin Oncol. 2012;30(32):3967–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Pfeiler G, Königsberg R, Fesl C, Mlineritsch B, Stoeger H, Singer CF, et al. Impact of body mass index on the efficacy of endocrine therapy in premenopausal patients with breast cancer: an analysis of the prospective ABCSG-12 trial. J Clin Oncol. 2011;29(19):2653–9.

    CAS  PubMed  Google Scholar 

  136. Artac M, et al. Bevacuzimab may be less effective in obese metastatic colorectal Cancer patients. J Gastrointest Cancer. 2019;50(2):214–20.

    CAS  PubMed  Google Scholar 

  137. Hopirtean C, Ciuleanu T, Cainap C, Todor N, Nagy V. Body mass index as a prognostic factor for disease progression in patients with metastatic colorectal Cancer treated with Bevacizumab based systemic therapy. Acta Endocrinol (Buchar). 2017;13(4):425–30.

    CAS  Google Scholar 

  138. Faruk Aykan N, Yildiz I, Sen F, Kilic L, Keskin S, Ciftci R, et al. Effect of increased body mass index (BMI) on time to tumour progression (TTP) in unresectable metastatic colorectal cancer (mCRC) patients treated with bevacizumab-based therapy. Med Oncol. 2013;30(3):679.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Simkens LH, et al. Influence of body mass index on outcome in advanced colorectal cancer patients receiving chemotherapy with or without targeted therapy. Eur J Cancer. 2011;47(17):2560–7.

    PubMed  Google Scholar 

  140. Patel GS, Ullah S, Beeke C, Hakendorf P, Padbury R, Price TJ, et al. Association of BMI with overall survival in patients with mCRC who received chemotherapy versus EGFR and VEGF-targeted therapies. Cancer Med. 2015;4(10):1461–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Kaidar-Person O, Badarna H, Bar-Sela G. Bevacizumab for metastatic colon cancer: does patient BMI influence survival? Anti-Cancer Drugs. 2015;26(3):363–6.

    CAS  PubMed  Google Scholar 

  142. Zafar Y, et al. LBA-01Survival outcomes according to body mass index (BMI): results from a pooled analysis of 5 observational or phase IV studies of bevacizumab in metastatic colorectal cancer (mCRC). Ann Oncol. 2015;26(suppl_4):iv117–7.

  143. Miyamoto Y, Oki E, Emi Y, Tokunaga S, Shimokawa M, Ogata Y, et al. Low visceral fat content is a negative predictive marker for Bevacizumab in metastatic colorectal Cancer. Anticancer Res. 2018;38(1):491–9.

    CAS  PubMed  Google Scholar 

  144. Slaughter KN, Thai T, Penaroza S, Benbrook DM, Thavathiru E, Ding K, et al. Measurements of adiposity as clinical biomarkers for first-line bevacizumab-based chemotherapy in epithelial ovarian cancer. Gynecol Oncol. 2014;133(1):11–5.

    CAS  PubMed  Google Scholar 

  145. Pizzuti L, Sergi D, Sperduti I, Lauro LD, Mazzotta M, Botti C, et al. Body mass index in HER2-negative metastatic breast cancer treated with first-line paclitaxel and bevacizumab. Cancer Biol Ther. 2018;19(4):328–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Steffens S, Grünwald V, Ringe KI, Seidel C, Eggers H, Schrader M, et al. Does obesity influence the prognosis of metastatic renal cell carcinoma in patients treated with vascular endothelial growth factor-targeted therapy? Oncologist. 2011;16(11):1565–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Albiges L, Hakimi AA, Xie W, McKay RR, Simantov R, Lin X, et al. Body mass index and metastatic renal cell carcinoma: clinical and biological correlations. J Clin Oncol. 2016;34(30):3655–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Song Y, et al. Body mass index and age are additional prognostic factors in patients with metastatic renal cell carcinoma treated with tyrosine kinase inhibitors. Urol Oncol. 2016;34(6):258 e15–22.

    Google Scholar 

  149. Mizuno R, Miyajima A, Hibi T, Masuda A, Shinojima T, Kikuchi E, et al. Impact of baseline visceral fat accumulation on prognosis in patients with metastatic renal cell carcinoma treated with systemic therapy. Med Oncol. 2017;34(4):47.

    PubMed  Google Scholar 

  150. Huillard O, Mir O, Peyromaure M, Tlemsani C, Giroux J, Boudou-Rouquette P, et al. Sarcopenia and body mass index predict sunitinib-induced early dose-limiting toxicities in renal cancer patients. Br J Cancer. 2013;108(5):1034–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Antoun S, et al. Low body mass index and sarcopenia associated with dose-limiting toxicity of sorafenib in patients with renal cell carcinoma. Ann Oncol. 2010;21(8):1594–8.

    CAS  PubMed  Google Scholar 

  152. Labenz C, Prenosil V, Koch S, Huber Y, Marquardt JU, Schattenberg JM, et al. Impact of individual components of the metabolic syndrome on the outcome of patients with advanced hepatocellular carcinoma treated with Sorafenib. Dig Dis. 2018;36(1):78–88.

    PubMed  Google Scholar 

  153. Martel S, Poletto E, Ferreira AR, Lambertini M, Sottotetti F, Bertolini I, et al. Impact of body mass index on the clinical outcomes of patients with HER2-positive metastatic breast cancer. Breast. 2018;37:142–7.

    PubMed  Google Scholar 

  154. Crozier JA, Moreno-Aspitia A, Ballman KV, Dueck AC, Pockaj BA, Perez EA. Effect of body mass index on tumor characteristics and disease-free survival in patients from the HER2-positive adjuvant trastuzumab trial N9831. Cancer. 2013;119(13):2447–54.

    CAS  PubMed  Google Scholar 

  155. Guenancia C, Lefebvre A, Cardinale D, Yu AF, Ladoire S, Ghiringhelli F, et al. Obesity as a risk factor for Anthracyclines and Trastuzumab Cardiotoxicity in breast Cancer: a systematic review and meta-analysis. J Clin Oncol. 2016;34(26):3157–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Cheraghi Z, Ayubi E, Doosti-Irani A. Obesity as a risk factor for Anthracyclines and Trastuzumab Cardiotoxicity in breast Cancer: Methodologic issues to avoid misinterpretation in the meta-analysis. J Clin Oncol. 2017;35(8):923.

    PubMed  Google Scholar 

  157. Wang HY, Yin BB, Jia DY, Hou YL. Association between obesity and trastuzumab-related cardiac toxicity in elderly patients with breast cancer. Oncotarget. 2017;8(45):79289–97.

    PubMed  PubMed Central  Google Scholar 

  158. Kosalka P, Johnson C, Turek M, Sulpher J, Law A, Botros J, et al. Effect of obesity, dyslipidemia, and diabetes on trastuzumab-related cardiotoxicity in breast cancer. Curr Oncol. 2019;26(3):e314–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen CT, du Y, Yamaguchi H, Hsu JM, Kuo HP, Hortobagyi GN, et al. Targeting the IKKbeta/mTOR/VEGF signaling pathway as a potential therapeutic strategy for obesity-related breast cancer. Mol Cancer Ther. 2012;11(10):2212–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Pizzuti L, Marchetti P, Natoli C, Gamucci T, Santini D, Scinto AF, et al. Fasting glucose and body mass index as predictors of activity in breast cancer patients treated with everolimus-exemestane: the EverExt study. Sci Rep. 2017;7(1):10597.

    PubMed  PubMed Central  Google Scholar 

  161. Yam C, Esteva FJ, Patel MM, Raghavendra AS, Ueno NT, Moulder SL, et al. Efficacy and safety of the combination of metformin, everolimus and exemestane in overweight and obese postmenopausal patients with metastatic, hormone receptor-positive, HER2-negative breast cancer: a phase II study. Investig New Drugs. 2019;37(2):345–51.

    CAS  Google Scholar 

  162. Park S, Park S, Lee SH, Suh B, Keam B, Kim TM, et al. Nutritional status in the era of target therapy: poor nutrition is a prognostic factor in non-small cell lung cancer with activating epidermal growth factor receptor mutations. Korean J Intern Med. 2016;31(6):1140–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Boker B, Luders H, Grohe C. Prognostic relevance of body mass index and rash for patients with metastatic non-small-cell lung cancer under therapy with erlotinib. Pneumologie. 2012;66(2):89–95.

    CAS  PubMed  Google Scholar 

  164. Rossi S, di Noia V, Tonetti L, Strippoli A, Basso M, Schinzari G, et al. Does sarcopenia affect outcome in patients with non-small-cell lung cancer harboring EGFR mutations? Future Oncol. 2018;14(10):919–26.

    CAS  PubMed  Google Scholar 

  165. Imai H, Kuwako T, Kaira K, Masuda T, Miura Y, Seki K, et al. Evaluation of gefitinib efficacy according to body mass index, body surface area, and body weight in patients with EGFR-mutated advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2017;79(3):497–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Sun H, Sun X, Zhai X, Guo J, Liu Y, Ying J, et al. Body mass index and exon 19 mutation as factors predicting the therapeutic efficacy of gefitinib in patients with epidermal growth factor receptor mutation-positive non-small cell lung cancer. Thorac Cancer. 2016;7(1):61–5.

    CAS  PubMed  Google Scholar 

  167. Kudo K, Hotta K, Ichihara E, Yoshioka H, Kunimasa K, Tsubouchi K, et al. Impact of body surface area on survival in EGFR-mutant non-small cell lung cancer patients treated with gefitinib monotherapy: observational study of the Okayama lung Cancer study group 0703. Cancer Chemother Pharmacol. 2015;76(2):251–6.

    CAS  PubMed  Google Scholar 

  168. Ichihara E, Hotta K, Takigawa N, Kudo K, Kato Y, Honda Y, et al. Impact of physical size on gefitinib efficacy in patients with non-small cell lung cancer harboring EGFR mutations. Lung Cancer. 2013;81(3):435–9.

    PubMed  Google Scholar 

  169. Oda N, Hotta K, Yoshioka H, Kudo K, Ichihara E, Kato Y, et al. Potential influence of being overweight on the development of hepatic dysfunction in Japanese patients with EGFR-mutated non-small cell lung cancer undergoing gefitinib monotherapy: the Okayama lung Cancer study group experience. Cancer Chemother Pharmacol. 2016;78(5):941–7.

    CAS  PubMed  Google Scholar 

  170. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17(12):e542–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177–85.

    CAS  PubMed  Google Scholar 

  172. Wang Z, Aguilar EG, Luna JI, Dunai C, Khuat LT, le CT, et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med. 2019;25(1):141–51.

    CAS  PubMed  Google Scholar 

  173. Naik GS, Waikar SS, Johnson AEW, Buchbinder EI, Haq R, Hodi FS, et al. Complex inter-relationship of body mass index, gender and serum creatinine on survival: exploring the obesity paradox in melanoma patients treated with checkpoint inhibition. J Immunother Cancer. 2019;7(1):89.

    PubMed  PubMed Central  Google Scholar 

  174. Richtig G, Hoeller C, Wolf M, Wolf I, Rainer BM, Schulter G, et al. Body mass index may predict the response to ipilimumab in metastatic melanoma: an observational multi-Centre study. PLoS One. 2018;13(10):e0204729.

    PubMed  PubMed Central  Google Scholar 

  175. Cortellini A, Bersanelli M, Buti S, Cannita K, Santini D, Perrone F, et al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable. J Immunother Cancer. 2019;7(1):57.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review is part of the ‘EOLO’ project ((Endocrinology and Oncology Learning Objects) led by Professors Emanuela Arvat, Annamaria Colao, Andrea Isidori, Andrea Lenzi and by dr. Roberto Baldelli, which aims at increasing the knowledge on oncological endocrinology.

We would like to acknowledge all the Collaborators of this project: M. Albertelli, D. Attala, A. Bianchi, A. Di Sarno, T. Feola, G. Mazziotti, A. Nervo, C. Pozza, G. Puliani, P. Razzore, S. Ramponi, S. Ricciardi, L. Rizza, F. Rota, E. Sbardella, M.C. Zatelli.

Authors Contributors

All authors have contributed equally to the conception and design of the review. MG, VA, VB, NP and VR analyzed data and drafted the article. RMR, LB, PDG, FS, EA and RB revised the manuscript critically. All authors approved the final article.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Marco Gallo.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallo, M., Adinolfi, V., Barucca, V. et al. Expected and paradoxical effects of obesity on cancer treatment response. Rev Endocr Metab Disord 22, 681–702 (2021). https://doi.org/10.1007/s11154-020-09597-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-020-09597-y

Keywords

Navigation