Journal of Productivity Analysis

, Volume 45, Issue 1, pp 53–69 | Cite as

Semiparametric stochastic metafrontier efficiency of European manufacturing firms

  • Marijn VerscheldeEmail author
  • Michel Dumont
  • Glenn Rayp
  • Bruno Merlevede


In this paper a semiparametric stochastic metafrontier approach is used to obtain insight into the performance of manufacturing firms in Europe. We differ from standard TFP studies at the firm level as we simultaneously allow for inefficiency , noise and do not impose a functional form on the input–output relation. Using AMADEUS firm-level data covering ten manufacturing sectors from seven EU15 countries, (1) we document substantial and persistent differences in performance (with Belgium and Germany as benchmark countries and Spain lagging behind) and a wide technology gap, (2) we confirm the absence of convergence in TFP between the seven selected countries, (3) we highlight a more pronounced technology gap for smaller firms.


Productive efficiency Metafrontier estimation Semiparametric frontier Kernel estimation Stochastic frontier Manufacturing 

JEL classification

C14 D24 L25 



We sincerely thank the National Bank of Belgium for supporting this project, the members of the research department of the National Bank of Belgium for their comments, the participants of the EWEPA 2013 conference in Helsinki and participants of the CompNet-ECB 2014 Workshop in Rome for their useful suggestions. In particular, we are grateful to Catherine Fuss for her support. Further, we would like to thank Sietse Bracke, Klaas Mulier, Antonio Peyrache, Valentin Zelenyuk and two anonymous referees for useful comments. Marijn Verschelde acknowledges financial support from the Fund for Scientific Research Flanders (FWO Vlaanderen). The computational resources (STEVIN Supercomputer Infrastructure) and services used in this work were kindly provided by Ghent University, the Flemish Supercomputer Center (VSC), the Hercules Foundation and the Flemish Government - department EWI


The authors received for this study financial support from the National Bank of Belgium.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

11123_2015_458_MOESM1_ESM.r (29 kb)
Supplementary material 1 (R 29 KB)
11123_2015_458_MOESM2_ESM.r (12 kb)
Supplementary material 2 (R 11 KB)
11123_2015_458_MOESM3_ESM.r (13 kb)
Supplementary material 3 (R 12 KB)
11123_2015_458_MOESM4_ESM.pdf (317 kb)
Supplementary material 4 (pdf 317 KB)


  1. Ackerberg D, Caves K, Frazer G (2006) Structural identification of production functions. In: Mimeo, UCLA Department of EconomicsGoogle Scholar
  2. Aigner D, Lovell CAK, Schmidt P (1977) Formulation and estimation of stochastic frontier production function models. J Econom 6:21–37CrossRefGoogle Scholar
  3. Altomonte C, Aquilante T, Ottaviano G (2012) The triggers of competitiveness: the EFIGE cross-country report. Bruegel Bluepr Ser 17:738Google Scholar
  4. Angeloni C, Bernatti N (2012) TFP analysis do-file: a first assessment. In: Compnet Workshop WS2 Session, Frankfurt, 11 December 2012Google Scholar
  5. Aragon Y, Daouia A, Thomas-Agnan C (2005) Nonparametric frontier estimation: a conditional quantile-based approach. Econom Theory 21(2):358–389Google Scholar
  6. Asplund M, Nocke V (2006) Firm turnover in imperfectly competitive markets. Rev Econ Stud 73(2):295–327CrossRefGoogle Scholar
  7. Baily M, Hulten C, Campbell D, Bresnahan T, Caves RE (1992) Productivity dynamics in manufacturing plants, Brookings papers on economic activity. Microeconomics, vol. 1992. Brookings Institution Press, pp 187–267Google Scholar
  8. Barnett W (1985) The minflex-Laurent translog flexible functional form. J Econom 30:33–34CrossRefGoogle Scholar
  9. Barnett W, Lee Y, Wolfe M (1985) The three-dimensional global properties of the minflex Laurent, generalized Leontief, and translog flexible functional forms. J Econom 30:3–31CrossRefGoogle Scholar
  10. Bartelsman E, Doms M (2000) Understanding productivity: lessons from longitudinal microdata. J Econ Lit 38(3):569–594CrossRefGoogle Scholar
  11. Bartelsman E, Haltiwanger J, Scarpetta S (2009) Measuring and analyzing cross-country differences in firm dynamics. In: Dunne T, Bradford Jensen J, Roberts M (eds) Producer dynamics: new evidence from micro data. National Bureau of Economic Research, CambridgeGoogle Scholar
  12. Battese G, Rao D (2002) Technology gap, efficiency, and a stochastic metafrontier function. Int J Bus Econ 1:87–93Google Scholar
  13. Battese GE, Rao DSP, O’Donnell CJ (2004) A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J Product Anal 21(1):91–103CrossRefGoogle Scholar
  14. Bernard A, Eaton J, Jensen J, Kortum S (2003) Plants and productivity in international trade. Am Econ Rev 93(4):1268–1290CrossRefGoogle Scholar
  15. Bernard A, Jensen B (1995) Exporters, jobs, and wages in US manufacturing: 1976–1987. Brook Pap Econ Act Microecon 1995:67–112CrossRefGoogle Scholar
  16. Bernard AB, Redding SJ, Schott PK (2009) Products and productivity. Scand J Econ 111(4):681–709CrossRefGoogle Scholar
  17. Bjurek H (1996) The Malmquist total factor productivity index. Scand J Econ 98(2):303–313CrossRefGoogle Scholar
  18. Castany L, López-Bazo E, Moreno R (2007) Do innovation and human capital explain the productivity gap between small and large firms? In: IREA working papers, 200716, University of Barcelona, Research Institute of Applied Economics, Revised Nov 2007Google Scholar
  19. Caves DW, Christensen LR, Diewert WE (1982) The economic-theory of index numbers and the measurement of input, output, and productivity. Econometrica 50(6):1393–1414CrossRefGoogle Scholar
  20. Cazals C, Florens JP, Simar L (2002) Nonparametric frontier estimation: a robust approach. J Econom 106(1):1–25CrossRefGoogle Scholar
  21. Chen K, Yang H (2011) A cross-country comparison of productivity growth using the generalised metafrontier Malmquist productivity index: with application to banking industries in Taiwan and China. J Product Anal 35:197–212CrossRefGoogle Scholar
  22. CompNet Task Force (2014) Micro-based evidence of EU competitiveness: the CompNet database. In: ECB working paper series 1634Google Scholar
  23. Dall’Olio A, Iootty M, Kanehira N, Saliola F (2013) Productivity growth in Europe. In: Policy research working paper 6425, World BankGoogle Scholar
  24. Davidson R, Duclos JY (2012) Testing for restricted stochastic dominance. Econom Rev 32(1):84–125CrossRefGoogle Scholar
  25. De Loecker J (2011) Product differentiation, multiproduct firms, and estimating the impact of trade liberalization on productivity. Econometrica 79(5):1407–1451CrossRefGoogle Scholar
  26. Debreu G (1951) The coefficient of resource utilization. Econometrica 19:273–292CrossRefGoogle Scholar
  27. Del Gatto M, Di Liberto A, Petraglia C (2011) Measuring productivity. J Econ Surv 25(5):952–1008CrossRefGoogle Scholar
  28. Deprins D, Simar L, Tulkens H (1984) Measuring labor inefficiency in post offices. In: Marchand M, Pestieau P, Tulkens H (eds) The performance of public enterprises: concepts and measurements. North-Holland, Amsterdam, pp 243–267Google Scholar
  29. Epure M, Kerstens K, Prior D (2011) Technology-based total factor productivity and benchmarking: new proposals and an application. Omega Int J Manag Sci 39(6):608–619CrossRefGoogle Scholar
  30. European Commission (2013) Industrial performance scoreboard and member states’ competitiveness performance and implementation of EU industrial policy. In: DG enterprise and industryGoogle Scholar
  31. Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc Ser A Gen 120(3):253–290CrossRefGoogle Scholar
  32. Foster L, Haltiwanger J, Syverson C (2008) Reallocation, firm turnover, and efficiency: Selection on productivity or profitability? Am Econ Rev 98(1):394–425CrossRefGoogle Scholar
  33. Färe R, Grosskopf S, Margaritis D (2008) Efficiency and productivity: Malmquist and more. In: Fried HO, Lovell CAK, Schmidt SS (eds) The measurement of productive efficiency and productivity growth. Oxford University Press, Oxford, pp 522–621CrossRefGoogle Scholar
  34. Färe R, Grosskopf S, Norris M, Zhang Z (1994) Productivity growth, technical progress, and efficiency change in industrialized countries. Am Econ Rev 84(1):66–83Google Scholar
  35. Hayfield T, Racine JS (2008) Nonparametric econometrics: the np package. J Stat Softw 27(5):1–32CrossRefGoogle Scholar
  36. Henderson DJ, Kumbhakar SC (2006) Public and private capital productivity puzzle: a nonparametric approach. South Econ J 73(1):219–232CrossRefGoogle Scholar
  37. Henderson DJ, Papageorgiou C, Parmeter CF (2012) Growth empirics without parameters. Econ J 122(559):125–154CrossRefGoogle Scholar
  38. Hulten C (2000) Total factor productivity: a short biography. In: NBER working paper (7471)Google Scholar
  39. Klette TJ, Griliches Z (1996) The inconsistency of common scale estimators when output prices are unobserved and endogenous. J Appl Econom 11(4):343–361CrossRefGoogle Scholar
  40. Knaus J (2013) snowfall: Easier cluster computing (based on snow). R package version 1.84–6.
  41. Kumbhakar S, Tsionas E (2008) Scale and efficiency measurement using a semiparametric stochastic frontier model: evidence from U.S. commercial banks. Empir Econ 34:585–602CrossRefGoogle Scholar
  42. Kumbhakar SC, Park BU, Simar L, Tsionas EG (2007) Nonparametric stochastic frontiers: a local maximum likelihood approach. J Econom 137(1):1–27CrossRefGoogle Scholar
  43. Kuosmanen T, Kortelainen M (2012) Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints. J Product Anal 38(1):11–28CrossRefGoogle Scholar
  44. Levinsohn J, Petrin A (2003) Estimating production functions using inputs to control for unobservables. Rev Econ Stud 70(2):317–341CrossRefGoogle Scholar
  45. Martins-Filho C, Yao F (2007) Nonparametric frontier estimation via local linear regression. J Econom 141(1):283–319CrossRefGoogle Scholar
  46. Martins-Filho C, Yao F (2015) Semiparametric stochastic frontier estimation via profile likelihood. Econom Rev 34(4):413–451CrossRefGoogle Scholar
  47. Mayer T, Ottaviano G (2008) The happy few: the internationalisation of european firms. Intereconomics 43(3):135–148CrossRefGoogle Scholar
  48. Meeusen W, van Den Broeck J (1977) Efficiency estimation from Cobb-Douglas production functions with composed error. Int Econ Rev 18(2):435–444CrossRefGoogle Scholar
  49. Melitz M (2003) The impact of trade on intra-industry reallocations and aggregate industry productivity. Econometrica 71(6):1695–1725CrossRefGoogle Scholar
  50. Merlevede B, De Zwaan M, Lenaerts K, Purice V (2015) Multinational networks, domestic, and foreign firms in Europe. In: FEB ugent working paper no. 2015/900Google Scholar
  51. MICRO-DYN (2007) Comparative study on entry and exit behaviour of firms, firm populations and market structures. Deliverable 13Google Scholar
  52. Morrison C (1988) Quasi-fixed inputs in US and Japanese manufacturing: a generalized Leontief restrcited cost function approach. Rev Econ Stat 70(2):275–287CrossRefGoogle Scholar
  53. O’Donnell C (2012) An aggregate quantitiy framework for measuring and decomposing productivity change. J Product Anal. doi: 10.1007/s11123-012-0275-1
  54. O’Donnell C, Rao D, Battese G (2008) Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empir Econ 34:231–255CrossRefGoogle Scholar
  55. Oh DH, Lee JD (2010) A metafrontier approach for measuring malmquist productivity index. Empir Econ 38(1):47–64CrossRefGoogle Scholar
  56. Olley GS, Pakes A (1996) The dynamics of productivity in the telecommunications equipment industry. Econometrica 64(6):1263–1297CrossRefGoogle Scholar
  57. Park B, Simar L, Zelenyuk V (2010) Local maximum likelihood techniques with categorical data. In: Centre for efficiency and productivity analysis WP14Google Scholar
  58. Park BU, Simar L, Zelenyuk V (2008) Local likelihood estimation of truncated regression and its partial derivatives: theory and application. J Econom 146(1):185–198CrossRefGoogle Scholar
  59. Parmeter P, Racine J (2013) Smooth constrained frontier analysis. In: Chen X, Swanson NR (eds) Recent advances and future directions in causality, prediction, and specification analysis. Springer, New York, pp 463–488CrossRefGoogle Scholar
  60. Serra T, Goodwin B (2009) The efficiency of Spanish arable crop organic farms, a local maximum likelihood approach. J Product Anal 31:113–124CrossRefGoogle Scholar
  61. Simar L (2007) How to improve the performances of DEA/FDH estimators in the presence of noise? J Product Anal 28(3):183–201CrossRefGoogle Scholar
  62. Simar L, Wilson PW (2008) Statistical inference in nonparametricfrontier models: recent developments and perspectives. In: Fried HO, Lovell CAK, Schmidt SS (eds) The measurement of productive efficiency and productivity growth. Oxford University Press, Oxford, pp 421–521Google Scholar
  63. Simar L, Zelenyuk V (2011) Stochastic FDH/DEA estimators for frontier analysis. J Product Anal 36(1):1–20CrossRefGoogle Scholar
  64. Smith M (2008) Stochastic frontier models with dependent error components. Econom J 11(1):172–192CrossRefGoogle Scholar
  65. Sondermann D (2012) Productivity in the euro area: any evidence of convergence? In: ECB working paper series 1431, European Central BankGoogle Scholar
  66. Sun K (2015) Constrained nonparametric estimation of input distance function. J Product Anal 43:85–97CrossRefGoogle Scholar
  67. Sun K, Kumbhakar SC (2013) Semiparametric smooth-coefficient stochastic frontier model. Econ Lett 120(2):305–309CrossRefGoogle Scholar
  68. Syverson C (2011) What determines productivity? J Econ Lit 49(2):326–365CrossRefGoogle Scholar
  69. Tibshirani R, Hastie T (1987) Local likelihood estimation. J Am Stat Assoc 82:559–567CrossRefGoogle Scholar
  70. Van Beveren I (2012) Total factor productivity estimation: a practical review. J Econ Surv 26(1):98–128CrossRefGoogle Scholar
  71. Van Biesebroeck J (2007) Robustness of productivity estimates. J Ind Econ 55(3):529–569CrossRefGoogle Scholar
  72. Wilson PW (2008) FEAR: a software package for frontier efficiency analysis with R. Socio-Econ Plan Sci 42:247–254CrossRefGoogle Scholar
  73. Wilson PW (2014) FEAR: frontier efficiency analysis with R. R package version 2.0.1Google Scholar
  74. Yatchew A (1998) Nonparametric regression techniques in economics. J Econ Lit 36:669–721Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marijn Verschelde
    • 1
    • 2
    Email author
  • Michel Dumont
    • 3
    • 6
  • Glenn Rayp
    • 4
  • Bruno Merlevede
    • 5
  1. 1.IÉSEG School of Management, LEM (UMR-CNRS 9221)Paris La Défense cedexFrance
  2. 2.Center for Economic StudiesKU LeuvenLeuvenBelgium
  3. 3.Federal Planning BureauBrusselsBelgium
  4. 4.SHERPPA, Department of General EconomicsGhent UniversityGhentBelgium
  5. 5.CERISE, Department of General EconomicsGhent UniversityGhentBelgium
  6. 6.Department of General EconomicsGhent UniversityGhentBelgium

Personalised recommendations