Photosynthesis Research

, Volume 135, Issue 1–3, pp 213–225 | Cite as

Quenching of chlorophyll triplet states by carotenoids in algal light-harvesting complexes related to fucoxanthin-chlorophyll protein

  • Petro Khoroshyy
  • David Bína
  • Zdenko Gardian
  • Radek Litvín
  • Jan Alster
  • Jakub Pšenčík
Original Article


We have used time-resolved absorption and fluorescence spectroscopy with nanosecond resolution to study triplet energy transfer from chlorophylls to carotenoids in a protective process that prevents the formation of reactive singlet oxygen. The light-harvesting complexes studied were isolated from Chromera velia, belonging to a group Alveolata, and Xanthonema debile and Nannochloropsis oceanica, both from Stramenopiles. All three light-harvesting complexes are related to fucoxanthin-chlorophyll protein, but contain only chlorophyll a and no chlorophyll c. In addition, they differ in the carotenoid content. This composition of the complexes allowed us to study the quenching of chlorophyll a triplet states by different carotenoids in a comparable environment. The triplet states of chlorophylls bound to the light-harvesting complexes were quenched by carotenoids with an efficiency close to 100%. Carotenoid triplet states were observed to rise with a ~5 ns lifetime and were spectrally and kinetically homogeneous. The triplet states were formed predominantly on the red-most chlorophylls and were quenched by carotenoids which were further identified or at least spectrally characterized.


Algae Energy transfer Light harvesting Photoprotection Photosynthesis Transient spectroscopy 



This study was supported by Czech Science Foundation projects P501/12/G055 and 14-01377P and by institutional funding RVO:60077344. Discussions with Prof. Herbert van Amerongen from the Wageningen University are greatly appreciated. We are indebted to Dr. Sarah Henry from Glasgow University for careful proofreading of the manuscript.

Supplementary material

11120_2017_416_MOESM1_ESM.pdf (661 kb)
Supplementary material 1 (PDF 662 KB)


  1. Alexandre MTA, Luhrs DC, van Stokkum IHM, Hiller R, Groot ML, Kennis JTM, van Grondelle R (2007) Triplet state dynamics in peridinin-chlorophyll-a-protein: a new pathway of photoprotection in LHCs? Biophys J 93:2118–2128CrossRefPubMedPubMedCentralGoogle Scholar
  2. Angerhofer A, Bornhauser F, Gall A, Cogdell RJ (1995) Optical and optically detected magnetic-resonance investigation on purple photosynthetic bacterial antenna complexes. Chem Phys 194:259–274CrossRefGoogle Scholar
  3. Arellano JB, Melo TB, Borrego CM, Garcia-Gil J, Naqvi KR (2000) Nanosecond laser photolysis studies of chlorosomes and artificial aggregates containing bacteriochlorophyll e: evidence for the proximity of carotenoids and bacteriochlorophyll a in chlorosomes from Chlorobium phaeobacteroides strain CL1401. Photochem Photobiol 72:669–675CrossRefPubMedGoogle Scholar
  4. Basso S, Simionato D, Gerotto C, Segalla A, Giacometti GM, Morosinotto T (2014) Characterization of the photosynthetic apparatus of the Eustigmatophycean Nannochloropsis gaditana: evidence of convergent evolution in the supramolecular organization of photosystem I. BBA-Bioenergetics 1837:306–314CrossRefPubMedGoogle Scholar
  5. Bautista JA, Hiller RG, Sharples FP, Gosztola D, Wasielewski M, Frank HA (1999) Singlet and triplet energy transfer in the peridinin-chlorophyll a protein from Amphidinium carterae. J Phys Chem A 103:2267–2273CrossRefGoogle Scholar
  6. Bina D, Gardian Z, Herbstova M, Kotabova E, Konik P, Litvn R, Prasil O, Tichy J, Vacha F (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy. BBA-Bioenergetics 1837:802–810CrossRefPubMedGoogle Scholar
  7. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, OxfordCrossRefGoogle Scholar
  8. Bonetti C, Alexandre MTA, Hiller RG, Kennis JTM, van Grondelle R (2009) Chl-a triplet quenching by peridinin in H-PCP and organic solvent revealed by step-scan FTIR time-resolved spectroscopy. Chem Phys 357:63–69CrossRefGoogle Scholar
  9. Buchel C, Naqvi KR, Melo TB (1998) Pigment-pigment interactions in thylakoids and LHCII of chlorophyll a/c containing alga Pleurochloris meiringensis: analysis of fluorescence-excitation and triplet-minus-singlet spectra. Spectrochim Acta A 54:719–726CrossRefGoogle Scholar
  10. Carbonera D, Giacometti G, Segre U (1996) Carotenoid interactions in peridinin chlorophyll a proteins from dinoflagellates—evidence for optical excitons and triplet migration. J Chem Soc-Faraday Trans 92:989–993CrossRefGoogle Scholar
  11. Carbonera D, Agostini A, Di Valentin M, Gerotto C, Basso S, Giacometti GM, Morosinotto T (2014) Photoprotective sites in the violaxanthin-chlorophyll a binding protein (VCP) from Nannochloropsis gaditana. BBA-Bioenergetics 1837:1235–1246CrossRefPubMedGoogle Scholar
  12. Croce R, Mozzo M, Morosinotto T, Romeo A, Hienerwadel R, Bassi R (2007) Singlet and triplet state transitions of carotenoids in the antenna complexes of higher-plant photosystem I. BioChemistry 46:3846–3855CrossRefPubMedGoogle Scholar
  13. Di Valentin M, Salvadori E, Agostini G, Biasibetti F, Ceola S, Hiller R, Giacometti GM, Carbonera D (2010) Triplet-triplet energy transfer in the major intrinsic light-harvesting complex of Amphidinium carterae as revealed by ODMR and EPR spectroscopies. BBA-Bioenergetics 1797:1759–1767CrossRefPubMedGoogle Scholar
  14. Di Valentin M, Buchel C, Giacometti GM, Carbonera D (2012) Chlorophyll triplet quenching by fucoxanthin in the fucoxanthin-chlorophyll protein from the diatom Cyclotella meneghiniana. Biochem Biophys Res Commun 427:637–641CrossRefPubMedGoogle Scholar
  15. Di Valentin M, Meneghin E, Orian L, Polimeno A, Buchel C, Salvadori E, Kay CWM, Carbonera D (2013) Triplet-triplet energy transfer in fucoxanthin-chlorophyll protein from diatom Cyclotella meneghiniana: insights into the structure of the complex. BBA-Bioenergetics 1827:1226–1234CrossRefPubMedGoogle Scholar
  16. Di Valentin M, Dal Farra MG, Galazzo L, Albertini M, Schulte T, Hofmann E, Carbonera D (2016) Distance measurements in peridinin-chlorophyll a-protein by light-induced PELDOR spectroscopy. Analysis of triplet state localization. BBA-Bioenergetics 1857:1909–1916CrossRefPubMedGoogle Scholar
  17. Di Valentin M, Ceola S, Agostini G, Giacometti GM, Angerhofer A, Crescenzi O, Barone V, Carbonera D (2008) Pulse ENDOR and density functional theory on the peridinin triplet state involved in the photo-protective mechanism in the peridinin-chlorophyll a-protein from Amphidinium carterae. BBA-Bioenergetics 1777:295–307CrossRefPubMedGoogle Scholar
  18. Di Valentin M, Biasibetti F, Ceola S, Carbonera D (2009) Identification of the sites of chlorophyll triplet quenching in relation to the structure of LHC-II from higher plants. Evidence from EPR spectroscopy. J Phys Chem B 113:13071–13078CrossRefPubMedGoogle Scholar
  19. Dittami SM, Michel G, Collén J, Boyen C, Tonon T (2010) Chlorophyll-binding proteins revisited–a multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evol Biol 10:365–365CrossRefPubMedPubMedCentralGoogle Scholar
  20. Durchan M, Tichy J, Litvin R, Slouf V, Gardian Z, Hribek P, Vacha F, Polivka T (2012) Role of carotenoids in light-harvesting processes in an antenna protein from the chromophyte Xanthonema debile. J Phys Chem B 116:8880–8889CrossRefPubMedGoogle Scholar
  21. Durchan M, Kesan G, Slouf V, Fuciman M, Staleva H, Tichy J, Litvin R, Bina D, Vacha F, Polivka T (2014) Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia. BBA-Bioenergetics 1837:1748–1755CrossRefPubMedGoogle Scholar
  22. Feng J, Wang Q, Wu YS, Ai XC, Zhang XJ, Huang YG, Zhang XK, Zhang JP (2004) Triplet excitation transfer between carotenoids in the LH2 complex from photosynthetic bacterium Rhodopseudomonas palustris. Photosynth Res 82:83–94CrossRefPubMedGoogle Scholar
  23. Gall A, Berera R, Alexandre MTA, Pascal AA, Bordes L, Mendes-Pinto MM, Andrianambinintsoa S, Stoitchkova KV, Marin A, Valkunas L, Horton P, Kennis JTM, van Grondelle R, Ruban A, Robert B (2011) Molecular adaptation of photoprotection: Triplet states in light-harvesting proteins. Biophys J 101:934–942CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gardian Z, Tichy J, Vacha F (2011) Structure of PSI, PSII and antennae complexes from yellow-green alga Xanthonema debile. Photosynth Res 108:25–32CrossRefPubMedGoogle Scholar
  25. Gelzinis A, Butkus V, Songaila E, Augulis R, Gall A, Buchel C, Robert B, Abramavicius D, Zigmantas D, Valkunas L (2015) Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex. BBA-Bioenergetics 1847:241–247CrossRefPubMedGoogle Scholar
  26. Hendler RW, Shrager RI (1994) Deconvolutions based on singular value decomposition and the pseudoinverse: a guide for beginners. J Biochem Biophys Methods 28:1–33CrossRefPubMedGoogle Scholar
  27. Hoffman GE, Sanchez Puerta MV, Delwiche CF (2011) Evolution of light-harvesting complex proteins from Chl c-containing algae. BMC Evol Biol 11:101–101CrossRefPubMedPubMedCentralGoogle Scholar
  28. Javorfi T, Garab G, Naqvi KR (1999) Reinvestigation of the triplet-minus-singlet spectrum of chloroplasts. Spectrochim Acta A 56:211–214CrossRefGoogle Scholar
  29. Jhutti CS, Javorfi T, Merzlyak MN, Naqvi KR (1998) Triplet-triplet absorption spectra and extinction coefficients of lutein, neoxanthin and violaxanthin. In: Garab G (ed) Photosynthesis: mechanisms and effects, pp 491–494. Springer, DordrechtCrossRefGoogle Scholar
  30. Jones E, Oliphant T, Peterson P (2001) SciPy: open source scientific tools for PythonGoogle Scholar
  31. Kearns DR (1971) Physical and chemical properties of singlet molecular oxygen. Chem Rev 71:395-427-CrossRefGoogle Scholar
  32. Kesan G, Durchan M, Tichy J, Minofar B, Kuznetsoya V, Fuciman M, Slouf V, Parlak C, Polivka T (2015) Different response of carbonyl carotenoids to solvent proticity helps to estimate structure of the unknown carotenoid from Chromera velia. J Phys Chem B 119:12653–12663CrossRefPubMedGoogle Scholar
  33. Kesan G, Litvin R, Bina D, Durchan M, Slouf V, Polivka T (2016) Efficient light-harvesting using non-carbonyl carotenoids: energy transfer dynamics in the VCP complex from Nannochloropsis oceanica. BBA-Bioenergetics 1857:370–379CrossRefPubMedGoogle Scholar
  34. Kleima FJ, Wendling M, Hofmann E, Peterman EJG, van Grondelle R, van Amerongen H (2000) Peridinin chlorophyll a protein: relating structure and steady-state spectroscopy. BioChemistry 39:5184–5195CrossRefPubMedGoogle Scholar
  35. Koziol AG, Borza T, Ishida KI, Keeling P, Lee RW, Durnford DG (2007) Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. Plant Physiol 143:1802–1816CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kvicalova Z, Alster J, Hofmann E, Khoroshyy P, Litvin R, Bina D, Polivka T, Psencik J (2016) Triplet-triplet energy transfer from chlorophylls to carotenoids in two antenna complexes from dinoflagellate Amphidinium carterae. BBA-Bioenergetics 1857:341–349CrossRefPubMedGoogle Scholar
  37. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New YorkCrossRefGoogle Scholar
  38. Larkum AW (2003) Light-harvesting systems in algae. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae, pp 277–304. Springer, DordrechtCrossRefGoogle Scholar
  39. Litvin R, Bina D, Herbstova M, Gardian Z (2016) Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica. Photosynth Res 130:137–150CrossRefPubMedGoogle Scholar
  40. Llansola-Portoles MJ, Uragami C, Pascal AA, Bina D, Litvin R, Robert B (2016) Pigment structure in the FCP-like light-harvesting complex from Chromera velia. BBA-Bioenergetics 1857:1759–1765CrossRefPubMedGoogle Scholar
  41. Melo TB, Frigaard NU, Matsuura K, Naqvi KR (2000) Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus aurantiacus. Spectrochim Acta A 56:2001–2010CrossRefGoogle Scholar
  42. Miloslavina Y, Grouneva I, Lambrev PH, Lepetit B, Goss R, Wilhelm C, Holzwarth AR (2009) Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Biochim Biophys Acta 1787:1189–1197CrossRefPubMedGoogle Scholar
  43. Moore RB, Obornik M, Janouskovec J, Chrudimsky T, Vancova M, Green DH, Wright SW, Davies NW, Bolch CJS, Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963CrossRefPubMedGoogle Scholar
  44. Mozzo M, Dall’Osto L, Hienerwadel R, Bassi R, Croce R (2008) Photoprotection in the antenna complexes of photosystem II—role of individual xanthophylls in chlorophyll triplet quenching. J Biol Chem 283:6184–6192CrossRefPubMedGoogle Scholar
  45. Naqvi KR, Melo TB, Raju BB, Javorfi T, Simidjiev I, Garab G (1997) Quenching of chlorophyll a singlets and triplets by carotenoids in light-harvesting complex of photosystem II: comparison of aggregates with trimers. Spectrochim Acta A 53:2659–2667CrossRefGoogle Scholar
  46. Nechushtai R, Thornber JP, Patterson LK, Fessenden RW, Levanon H (1988) Photosensitization of triplet carotenoid in photosynthetic light-harvesting complex of photosystem-II. J Phys Chem 92:1165–1168CrossRefGoogle Scholar
  47. Niedzwiedzki DM, Blankenship RE (2010) Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynth Res 106:227–238CrossRefPubMedGoogle Scholar
  48. Niedzwiedzki DM, Jiang J, Lo CS, Blankenship RE (2013) Low-temperature spectroscopic properties of the peridinin-chlorophyll a-protein (PCP) complex from the coral symbiotic dinoflagellate Symbiodinium. J Phys Chem B 117:11091–11099CrossRefPubMedGoogle Scholar
  49. Niedzwiedzki DM, Jiang J, Lo CS, Blankenship RE (2014) Spectroscopic properties of the chlorophyll a-chlorophyll c2-peridinin-protein-complex (acpPC) from the coral symbiotic dinoflagellate Symbiodinium. Photosynth Res 120:125–139CrossRefPubMedGoogle Scholar
  50. Oliphant TE (2006) A guide to NumPy. Trelgol Publishing, Spanish ForkGoogle Scholar
  51. Owens TG, Gallagher JC, Alberte RS (1987) Photosynthetic light-harvesting function of violaxanthin in Nannochloropsis spp. (Eustigmatophyceae)1. J Phycol 23:79–85CrossRefGoogle Scholar
  52. Pascal AA, Liu ZF, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang WR, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137CrossRefPubMedGoogle Scholar
  53. Pessarakli M (2016) Handbook of photosynthesis, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  54. Peterman EJG, Dukker FM, van Grondelle R, van Amerongen H (1995) Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Biophys J 69:2670–2678CrossRefPubMedPubMedCentralGoogle Scholar
  55. Premvardhan L, Robert B, Beer A, Buchel C (2010) Pigment organization in fucoxanthin chlorophyll a/c2 proteins (FCP) based on resonance Raman spectroscopy and sequence analysis. BBA-Bioenergetics 1797:1647–1656CrossRefPubMedGoogle Scholar
  56. Psencik J, Searle GFW, Hala J, Schaafsma TJ (1994) Fluorescence-detected magnetic-resonance (FDMR) of green sulfur photosynthetic bacteria Chlorobium sp. Photosynth Res 40:1–10CrossRefPubMedGoogle Scholar
  57. Schodel R, Irrgang KD, Voigt J, Renger G (1998) Rate of carotenoid triplet formation in solubilized light-harvesting complex II (LHCII) from spinach. Biophys J 75:3143–3153CrossRefPubMedPubMedCentralGoogle Scholar
  58. Shrager RI, Hendler W (1998) Some pitfalls in curve-fitting and how to avoid them: a case in point. J Biochem Biophys Methods 36:157–173CrossRefPubMedGoogle Scholar
  59. Straume M, Johnson ML (1992) Monte Carlo method for determining complete confidence probability distributions of estimated model parameters. Methods Enzymol 210:117–129CrossRefPubMedGoogle Scholar
  60. Tichy J, Gardian Z, Bina D, Konik P, Litvin R, Herbstova M, Pain A, Vacha F (2013) Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. BBA-Bioenergetics 1827:723–729CrossRefPubMedGoogle Scholar
  61. Truscott TG, Land EJ, Sykes A (1973) In-vitro photochemistry of biological molecules. 3. Absorption-spectra, lifetimes and rates of oxygen quenching of triplet-states of beta-carotene, retinal and related polyenes. Photochem Photobiol 17:43–51CrossRefPubMedGoogle Scholar
  62. van Stokkum IHM, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. BBA-Bioenergetics 1657:82–104CrossRefPubMedGoogle Scholar
  63. van der Vos R, Carbonera D, Hoff AJ (1991) Microwave and optical spectroscopy of carotenoid triplets in light-harvesting complex LHCII of spinach. Appl Magn Reson 2:179–202CrossRefGoogle Scholar
  64. Vieler A, Wu GX, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Ferguson AA, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya, Simpson JP, TerBush A, Warakanont J, Zauner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C (2012) Genome, functional gene annotation, and nuclear transformation of the Heterokont Oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8:e1003064CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Petro Khoroshyy
    • 1
  • David Bína
    • 2
    • 3
  • Zdenko Gardian
    • 2
    • 3
  • Radek Litvín
    • 2
    • 3
  • Jan Alster
    • 1
  • Jakub Pšenčík
    • 1
  1. 1.Department of Chemical Physics and Optics, Faculty of Mathematics and PhysicsCharles UniversityPrague 2Czech Republic
  2. 2.Biological CentreCzech Academy of SciencesČeské BudějoviceCzech Republic
  3. 3.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations