Skip to main content

Advertisement

Log in

Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

An Erratum to this article was published on 09 April 2011

Abstract

There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional ‘first-generation’ biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO2 emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO2 biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asinari Di San Marzano C-M, Legros A, Naveau H, Nyns EJ (1981) Biomethanation of the marine algae Tetraselmis. Int J Sustain Energy 1(4):263–272

    Article  Google Scholar 

  • Badger MR, Gallagher A (1987) Adaptation of photosynthetic CO2 and HCO3 -accumulation by the cyanobacterium Synechococcus PCC6301 to growth at different inorganic carbon concentrations. Aust J Plant Physiol 14:189–201

    CAS  Google Scholar 

  • Bassham JA, Benson AA, Kay LD, Harris AZ, Wilson AT, Calvin M (1954) The path of carbon in photosynthesis: the cyclic regeneration of carbon dioxide acceptor. J Am Chem Soc 76:1760–1770

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halo-tolerant alga Dunaliella. Trends Biotech 8:121–126

    Article  CAS  Google Scholar 

  • Benemann JR (1997) CO2 mitigation with microalgae systems. Ener Convers Mgmt 38:S475–S479

    Article  CAS  Google Scholar 

  • BP (2009) BP statistical review of world energy. http://www.bp.com/statisticalreview

  • Braun R (2007) Anaerobic digestion: a multi-facetted process for energy, environmental management and rural development. In: Springer PR (ed) Improvement of crop plants for industrial uses. Kluwer Academic Publishers, Dordrecht, pp 335–416

    Chapter  Google Scholar 

  • Briand X, Morand P (1997) Anaerobic digestion of Ulva sp. 1. Relationship between Ulva composition and methanisation. J Appl Phycol 9(6):511–524

    CAS  Google Scholar 

  • Brown LM (1996) Uptake of carbon dioxide from flue gas by microalgae. Energy Convers Mgmt 37:1363–1367

    Article  CAS  Google Scholar 

  • Burlew JS (1953) Current status of the large-scale culture of algae. In: Burlew JS (ed) Algal culture from laboratory to pilot plant. Carnegie Institute of Washington Publication 600, Washington, pp 3–23

    Google Scholar 

  • Campbell MN (2008) Biodiesel: algae as a renewable source for liquid fuel. Guelph Eng J 1:2–7

    Google Scholar 

  • Campbell D, Zhou G, Gustafsson P, Oquist G, Clarke AK (1995) Electron transport regulates exchange of two forms of photosystem II D1 protein in the cyanobacterium Synechococcus. EMBO J 14:5457–5466

    PubMed  CAS  Google Scholar 

  • Chen PH, Oswald WJ (1998) Thermochemical treatment for algal fermentation. Env Int 24(8):889–897

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Cirne DG, Paloumet X, Björnsson L, Alves MM, Mattiasson B (2007) Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renew Energy 32(6):965–975

    Article  CAS  Google Scholar 

  • Clark DJ, Flynn KJ (2000) The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton. Proc Biol Soc 267:953–959

    Article  CAS  Google Scholar 

  • Cornacchio L, Hall ER, Trevors JT (1986) Modified serum bottle testing procedures forindustrial wastewaters. Technology Transfer Workshop on Laboratory Scale Anaerobic Treatability Testing Techniques, Burlington

    Google Scholar 

  • De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotech Bioeng 103(2):296–304

    Article  Google Scholar 

  • Demirbas A (2010) New renewable fuels from vegetable oils. Energy Sources A 32:628–636

    Article  CAS  Google Scholar 

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Ethanol Industry Outlook (2010) Climate of opportunity. http://www.ethanolrfa.org/pages/annual-industry-outlook/RFAoutlook2010_fin.pdf

  • Falkowski PG (2000) Rationalizing elemental ratios in unicellular algae. J Phycol 36:3–6

    Article  CAS  Google Scholar 

  • Geider RJ, LaRoche J (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37:1–17

    Article  Google Scholar 

  • Gordillo FJL, Goutx M, Figueroa FL, Niell FX (1998) Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. J App Phycol 10:135–144

    Article  CAS  Google Scholar 

  • Gordillo FJL, Jiménez C, Figueroa FL, Niell FX (2003) Influence of elevated CO2 and nitrogen supply on the carbon assimilation performance and cell composition of the unicellular alga Dunaliella viridis. Physiol Plant 119:513–518

    Article  CAS  Google Scholar 

  • Heaven S, Milledge J, Zhang Y (2011) Comments on ‘anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable’. Biotech Adv 29(1):164–167

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR (2009) Biomass productivities in wild-type and pigment mutant of Cyclotella sp. (diatom). Appl Biochem Biotechnol 157:507–526

    Article  PubMed  CAS  Google Scholar 

  • Huntley ME, Redalje DG (2006) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Glob Change 12:573–608

    Article  Google Scholar 

  • Hutson ND, Krzyzynska R, Srivastava RK (2008) Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber. Ind Eng Chem Res 47:5825–5831

    Article  CAS  Google Scholar 

  • Kadam KL (1997) Power plant flue gas as a source of CO2 for microalgae cultivation: economic impact of different process options. Energy Convers Mgmt 38:S505–S510

    Article  CAS  Google Scholar 

  • Lee J-S, Kim D-K, Lee J-P, Park S-C, Koh J-H, Cho H-S, Kim S-W (2002) Effect of SO2 and NO on growth of Chlorella sp. KR-1. Bioresour Tech 82:1–4

    Article  CAS  Google Scholar 

  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. In Proceedings of the algae biofuels assessment workshop, Berkeley, CA, USA, January 15–16, 2009

  • Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO2 fixation from the flue-gas of coal-fired thermal power plant by microalgae. Energy Convers Mgmt 36:717–720

    Article  CAS  Google Scholar 

  • McGinn PJ, Morel FMM (2008) Expression and inhibition of the carboxylating and decarboxylating enzymes of the photosynthetic C4 pathway of marine diatoms. Plant Physiol 146:300–309

    Article  PubMed  CAS  Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing that chlorophyll antennae to maximize efficieny. Plant Sci 177:272–280

    Article  CAS  Google Scholar 

  • Melis A, Neidhardt J, Benemann JR (1999) Dunaliella salina (chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J App Phycol 10:515–525

    Article  Google Scholar 

  • Merkel TC, Lin H, Wei X, Baker R (2010) Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Mem Sci 359:126–139

    Article  CAS  Google Scholar 

  • Muradyan EA, Klyachko-Gurvich GL, Tsoglin LN, Sergeyenko TV, Pronina NA (2004) Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration. Russ J Plant Physiol 51:53–62

    Article  CAS  Google Scholar 

  • Nakajima Y, Ueda R (1997) Imporvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments. J App Phycol 9:503–510

    CAS  Google Scholar 

  • Nakajima Y, Tsuzuki M, Ueda R (2001) Improved productivity by reduction of the content of light-harvesting pigment in Chlamydomonas perigranulata. J App Phycol 13:95–101

    Article  CAS  Google Scholar 

  • Negoro M, Shioji N, Ikuta Y, Makita T, Hirayama K, Suzuki S (1993) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 39–40:643–653

    Article  Google Scholar 

  • Ogbonna JC, Soejima T, Tanaka H (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. Prog Indust Microbiol 35:289–297

    Article  CAS  Google Scholar 

  • Olson ES, Crocker CR, Benson SA, Pavlish JH, Holmes MJ (2005) Surface compositions of carbon sorbents exposed to simulated low-rank coal flue gases. J Air Waste Manage Assoc 55:747–754

    CAS  Google Scholar 

  • Oswald WJ, Golueke C (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262

    Article  PubMed  CAS  Google Scholar 

  • Ota M, Kato Y, Watanabe H, Watanabe M, Sato Y, Smith RL, Inomata H (2009) Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate. Biores Tech 100:5237–5242

    Article  CAS  Google Scholar 

  • Pavlostathis SG (2006) Basic concept of biological processes. In: Cervantes FJ, Pavlostathis SG, van Haandel AC (eds) Advanced biological treatment processes for industrial wastewaters. IWA Publishing, London, pp 16–46

    Google Scholar 

  • Philip L, Deshusses MA (2003) Sulfur dioxide treatment from flue gases using a biotrickling filter-bioreactor system. Env Sci Technol 37:1978–1982

    Article  CAS  Google Scholar 

  • Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Bioref 3:431–440

    Article  CAS  Google Scholar 

  • Pronina NA, Rogova NB, Furnadzhieva S, Klyachko-Gurvich GL, Semenenko VE (1998) Effect of CO2 concentration of the fatty acid composition of lipids in Chlamydomonas reinhardtii Cia-3, a mutant deficient in the CO2 concentrating mechanism. Russ J Plant Physiol 45:529–538

    Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  PubMed  CAS  Google Scholar 

  • Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Tech 100:261–268

    Article  CAS  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone Memorial Volume. Liverpool University Press, Liverpool, pp 177–192

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    CAS  Google Scholar 

  • Reinfelder JR (2010) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Ann Rev Mar Sci 3:291–315

    Article  Google Scholar 

  • Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999

    Article  PubMed  CAS  Google Scholar 

  • Renberg L, Johansson AI, Shutova T, Stenlund H, Aksmann A, Raven JA, Gardeström P, Moritz T, Samuelsson G (2010) A metabolomic approach to study major metabolite changes during acclimation to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiol 154:187–196

    Article  PubMed  CAS  Google Scholar 

  • Rico-Villa B, Woerther P, Minganta C, Lepiver D, Pouvreau S, Hamon M, Robert R (2008) A flow-through rearing system for ecophysiological studies of Pacific oyster Crassostrea gigas larvae. Aquacult 282:54–60

    Article  Google Scholar 

  • Riebesell U (2004) Effects of CO2 enrichment on marine phytoplankton. J Oceanogr 60:719–729

    Article  CAS  Google Scholar 

  • Riebesell U, Wolf-Gladrow DA, Smetacek V (1993) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361:249–251

    Article  CAS  Google Scholar 

  • Riebesell U, Revill AT, Holdsworth DG, Volkman J (2000) The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochim Cosmochim Acta 64:4179–4192

    Article  CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  Google Scholar 

  • Samson R, LeDuy A (1983a) Improved performance of anaerobic digestion of Spirulina maxima algal biomass by adition of carbon-rich wastes. Biotechnol Lett 5(10):677–682

    Article  Google Scholar 

  • Samson R, LeDuy A (1983b) Influence of mechanical and chemical pretreatments on anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Lett 5(10):671–676

    Article  Google Scholar 

  • Samson R, LeDuy A (1986) Detailed study of anaerobic digestion of Spirulina maxima algal biomass. Biotech Bioeng 28(7):1014–1023

    Article  CAS  Google Scholar 

  • Sato N (1989) Modulation of lipid and fatty acid content by carbon dioxide in Chlamydomonas reinhardtii. Plant Sci 61:17–21

    Article  CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  PubMed  CAS  Google Scholar 

  • Sheehan JT, Dunahay J, Benemann JR, Roessler PG (1998) A look back at the US Department of Energy’s Aquatic Species Program—biodiesel from algae. http://govdocs.aquake.org/cgi/reprint/2004/915/9150010.pdf

  • Shelton DR, Tiedje JM (1984) General method for determining anaerobic biodegradation potential. Appl Env Microbiol 47(4):850–857

    CAS  Google Scholar 

  • Sialve G, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102(1):26–34

    Article  PubMed  CAS  Google Scholar 

  • Sültemeyer D, Price GD, Badger MR (1995) Characterization of carbon dioxide and bicarbonate uptake during steady-state photosynthesis in the marine cyanobacterium Synechococcus PCC7002. Planta 197:597–607

    Article  Google Scholar 

  • Tatsuzawa H, Takizawa E, Wada M, Yamamoto Y (1996) Fatty acid and lipid composition of the acidophilic green alga Chlamydomonas sp. 1. J Phycol 32(4):598–601

    Article  CAS  Google Scholar 

  • Travieso L, Sanchez EP, Benitez F, Conde JL (1993) Arthrospira sp. intensive cultures for food and biogas purification. Biotechnol Lett 15(10):1091–1094

    Article  CAS  Google Scholar 

  • Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic mircroorganisms. J Appl Phycol 4:221–231

    Article  Google Scholar 

  • Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A (1990) Effects of CO2 concentration during growth on fatty acid composition in microalgae. Plant Physiol 93:851–856

    Article  PubMed  CAS  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  PubMed  CAS  Google Scholar 

  • UOP LLC (2008) Renewable jet process. http://www.uop.com/objects/Renewable_Jet_Process.pdf

  • Wada H, Murata N (1998) Membrane lipids in cyanobacteria. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure function and genetics. Kluwer Academic Publishers, Dordrecht, pp 65–81

    Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara K, Hiroyasu N, Eguchi K, Hirata K, Miyamoto K (1996) Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor. J Ferm Bioeng 82:351–354

    Article  CAS  Google Scholar 

  • Yu J-W, Price GD, Badger MR (1994) Characterisation of CO2 and HCO3-uptake during steady-state photosynthesis in the cyanobacterium Synechococcus PCC7942. Aust J Plant Physiol 21:185–195

    Article  CAS  Google Scholar 

  • Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Tech 102(2):1149–1158

    Article  CAS  Google Scholar 

  • Zhang S-H, Cai L-L, Mi X-H, Jiang J-L, Li W (2008) NOx removal from simulated flue gas by chemical absorption-biological reduction integrated approach in a biofilter. Env Sci Technol 42:3814–3820

    Article  CAS  Google Scholar 

  • Zhila NO, Kalacheva GS, Volova TG (2005) Effect of nitrogen limitation on the growth and lipid composition of the green alga Botryococcus braunii Kutz IPPAS H-252. Russ J Plant Physiol 52:311–319

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. McGinn.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11120-011-9649-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGinn, P.J., Dickinson, K.E., Bhatti, S. et al. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res 109, 231–247 (2011). https://doi.org/10.1007/s11120-011-9638-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9638-0

Keywords

Navigation