Spatial suitability assessment for vineyard site selection based on fuzzy logic

  • Golnaz Badr
  • Gerrit Hoogenboom
  • Michelle Moyer
  • Markus Keller
  • Richard Rupp
  • Joan Davenport
Article
  • 90 Downloads

Abstract

Developing a sustainable agricultural production system requires knowledge of the climate, soil, and topography of the area of interest. This is especially relevant for wine grape (Vitis vinefera L.) production. The main objective of this study was the development of a comprehensive system to aid in the selection of suitable areas for grapevine cultivation. Included in this system were several bioclimatic indices, such as Growing Degree Days (GDD), Frost Free Days (FFD), and the Huglin Index (HI) calculated over a period of 30 years using daily weather data obtained from the University of Idaho’s Gridded Surface Meteorological (UI GSM) dataset. Soil data and topographical data were also included in the system. The bioclimatic indices, soil, and topographic data were then transformed using fuzzy logic, and suitability maps with scores ranging from 0 to 1 were developed. The final vineyard-potential scores were obtained by combining the soil, weather, and topographic potential scores with a range from 0 to 1, where 0 pertained to non-suitable areas and 1 referred to optimal sites. The maps were evaluated by comparing the range of suitability scores of existing vineyards in Washington State. The evaluation indicated that 97% of the established vineyards have a vineyard-potential score that ranges from 0.8 to 1. The results of this study revealed that 11% of the total study area had a high potential for wine grape production. This study was able to successfully employ fuzzy logic to help decision-makers, growers, and others with conducting a precise land assessment for wine grape production.

Keywords

Fuzzy logic Spatial suitability analysis Wine grape Vineyard Site selection 

Notes

Acknowledgements

This research was partially supported by Washington State University’s AgWeatherNet Program, the Northwest Center for Small Fruits Research, and an IBM Fellowship awarded to the corresponding author. The authors would like to thank the United States Department of Agriculture Geospatial Gateway website for providing access to the soil and topography datasets and the University of Idaho Gridded Surface Meteorological Data (UofI METDATA) for providing access to the raw weather data that were used in this study.

References

  1. Abatzoglou, J. T. (2011). Development of gridded surface meteorological data for ecological applications and modelling. International Journal of Climatology, 33(1), 121–131.CrossRefGoogle Scholar
  2. Boryan, C., Yang, Z., and Di, L. (2012). Deriving 2011 Cultivated Land Cover Data Sets Using USDA National Agricultural Statistics Service Historic Cropland Data Layers. In: Proceedings of the IGARSS 2012 Conference, Munich, Germany, July 23–26, 2012Google Scholar
  3. Boryan, C., Yang, Z., Mueller, R., & Craig, M. (2011). Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service Cropland Data Layer Program”. Geocarto International, 26(5), 341–358.CrossRefGoogle Scholar
  4. Branas, J. (1974). Viticulture. Dehan, Montpellier: IMP.Google Scholar
  5. Carey, V., Archer, E., Barbeau, G., and Saayman, D. (2007). The use of local knowledge relating to vineyard performance to identify viticultural terroirs in Stellenbosch and surrounds. In: Nuzzo, V., Giorio, P., Giulivo, C. (Eds.): Proceedings of the International Workshop on Advances in Grapevine and Wine Research. International Society Horticultural Science, Leuven 1, pp. 385–391.Google Scholar
  6. Coulon-Leroy, C., Charnomordic, B., Rioux, D., Thiollet-Scholtus, M., & Guillaume, S. (2012). Prediction of vine vigor and percosity using data and knowledge-based fuzzy interface systems. Journal International des Sciences de la Vigne et du Vin, 46, 185–205.Google Scholar
  7. Coulon-Leroy, C., Charnomordic, B., Thiollet-Scholtus, M., & Guillaume, S. (2013). Imperfect knowledge and data-based approach to model a complex agronomic feature—Application to vine vigor. Computers and Electronics in Agriculture, 99, 135–145.CrossRefGoogle Scholar
  8. Coulon-Leroy, C., Charnomordic, B., Thiollet-Scholtus, M., & Guillaume, S. (2014). Fuzzy modeling of a composite agronomical feature using fisPro: The case of vine vigor. In A. Laurent, O. Strauss, B. Bouchon-Meunier, & R. R. Yager (Eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 127–137). Berlin: Springer.Google Scholar
  9. Daly, C., Halbleib, M., Smith, J. L., Gibson, W. P., Doggett, M. K., Taylor, G. H., et al. (2008). Physiographically-sensitive mapping of temperature and precipitation across the conterminous United States. International Journal of Climatology, 28, 2031–2064.CrossRefGoogle Scholar
  10. Dougherty, P. H. (2012). The geography of wine: Regions, Terroir and Techniques. Berlin: Springer.CrossRefGoogle Scholar
  11. Dry, P. R., & Coombe, B. G. (Eds.). (2004). Viticulture Volume 1—Resources (2nd ed., p. 255). Adelaide, SA: Winetitles.Google Scholar
  12. Dry, P. R., & Smart, R. E. (1988). Viticulture. In B. G. Coombe & P. R. Dry (Eds.), Vineyard site selection. Adelaide, Australia: Winetitles.Google Scholar
  13. ECY (Department of Ecology State of Washington Website).(2015). Retrieved March 3, 2016, from http://www.ecy.wa.gov/programs/wr/rights/water-right-home.html
  14. ESRI. (2015). ArcGIS. 10.2 Desktop. Redlands, CA: Environmental Systems Research Institute.Google Scholar
  15. FAO. (1976). A Frame Work for Land Evaluation, Soils Bulletin No. 32. Rome: UNO-FAO.Google Scholar
  16. Ferguson, J. C., Moyer, M. M., Mills, L. J., Hoogenboom, G., & Keller, M. (2014). Modeling Dormant Bud Cold Hardiness And Budbreak in 23 Vitis Genotypes Reveals Variation by Region of Origin. American Journal of Enology and Viticulture, 65, 59–71.CrossRefGoogle Scholar
  17. Ferguson, J. C., Tarara, J. M., Mills, L. J., Grove, G. G., & Keller, M. (2011). Dynamic thermal time model of cold hardiness for dormant grapevine buds. Annals of Botany, 107(3), 389–396.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fisher, P. (1996). Boolean and fuzzy regions. In P. A. Burrough & A. Frank (Eds.), Geographic objects with indeterminate boundaries (pp. 87–94). London, UK: Taylor and Francis Publishing.Google Scholar
  19. Fragoulis, G., Trevisan, M., Capri, E., Guardo, A., & Sorce, A.(2007). EIOVI: An indicator for the environmental impact of organic viticulture based on a fuzzy expert system. In: Re, A. A. M., Del; Capri, E.; Fragoulis, G.; Trevisan, M. (Eds.) In 13th Symposium Pesticide Chemistry. Environmental fate and ecological effects of pesticides, pp. 623–632, Pavia: La Goliardica Pavese s.r.lGoogle Scholar
  20. GDG (Geospatial Data Gateway). (2015). USDA. Retrieved September 10, 2017, from https://gdg.sc.egov.usda.gov/last
  21. Gil, Y., Sinfort, C., Guillaume, S., Brunet, Y., & Palagos, B. (2008). Influence of micrometeorological factors on pesticide loss to the air during vine spraying: Data analysis with statistical and fuzzy inference models. Biosystems Engineering, 100, 184–197.CrossRefGoogle Scholar
  22. Gladstones, J. (1992). Viticulture and environment. Adelaide: Winetitles.Google Scholar
  23. Gladstones, J. (2011). Wine, terroir and climate change. Kent Town, South Australia: Wakefield Press.Google Scholar
  24. Grelier, M., Guillaume, S., Tisseyre, B., & Scholasch, T. (2007). Precision viticulture data analysis using fuzzy inference systems. Journal International des Sciences de la Vigne et du Vin, 41, 19–31.Google Scholar
  25. Han, W., Yang, Z., Di, L., & Mueller, R. (2012). Crops cape: A Web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision Support. Computers and Electronics in Agriculture, 84, 111–123.CrossRefGoogle Scholar
  26. Hidalgo, L. (2002). Tratado de viticultura general. Madrid: Ediciones Mundi-Prensa.Google Scholar
  27. Huglin, P. (1978). Nouveau mode d’e´valuation des possibilite´s he´liothermiques d’un milieu viticole, Comptes Rendus de l’Acade´mie d’Agriculture, pp. 117–126Google Scholar
  28. Jackson, R. S. (2008). Wine science principles and applications (3rd ed.). Burlington, MA: Academic Press.Google Scholar
  29. Jackson, D. I., & Cherry, N. J. (1988). Prediction of a district’s grape-ripening capacity using a latitude-temperature index (LTI). American Journal of Enology and Viticulture, 39(1), 19–28.Google Scholar
  30. Jones, G. V. (2005). Climate change in the western United States grape growing regions. In Acta Horticulturae (ISHS) (Vol. 689, pp. 41–60).Google Scholar
  31. Jones, G. V. (2006). Climate and terroir. Impacts of climate variability and change on Wine. In fine wine and terroir–the geoscience perspective. In R. W. Macqueen & L. D. Meinert (Eds.), Geoscience Canada Reprint Series Number 9 (p. 247). St. John’s, Newfoundland: Geological Association of Canada.Google Scholar
  32. Jones, G. V., Duff, A. A., Hall, A., & Myers, J. W. (2010). Spatial analysis of climate in winegrape growing regions in the western United States. American Journal of Enology and Viticulture, 61(3), 313–326.Google Scholar
  33. Jones, A. J., Mielke, L. N., Bartles, C. A., & Miller, C. A. (1989). Relationship of landscape position and properties to crop production. Journal of Soil and Water Conservation, 44, 328–332.Google Scholar
  34. Jones, G. V., Snead, N., & Nelson, P. (2004). Geology and wine 8—modeling viticultural landscapes: A GIS analysis of the terroir potential in the Umpqua valley of Oregon. Geoscience Canada, 31, 167–178.Google Scholar
  35. Keller, M. (2010). The science of grapevines (1st ed., p. 400). New York: Academic press.Google Scholar
  36. Kravchenko, A., & Bullock, D. G. (2000). Correlation of corn and soybean grain yield with topography and soil properties. Agronomy Journal, 92, 75–83.CrossRefGoogle Scholar
  37. Kurtural, S.K. (2007). Vineyard Site Selection. University of Kentucky Cooperative Extension ServiceGoogle Scholar
  38. Kurtural, S. K., Dami, I. E., & Taylor, B. H. (2006). Utilizing GIS technologies in selection of suitable vineyard sites. International Journal of Fruit Science, 6, 87–107.CrossRefGoogle Scholar
  39. Lanyon, D.M., Cass, A., & Hansen, D. (2004). The effect of soil properties on wine performance. CSIRO, Land and Water Technical Report No. 34/4, 54 p.Google Scholar
  40. Lee, S. I., & Lee, S. S. (2010). Development of site suitability analysis system for riverbank filtration. Water Science and Engineering, 3(1), 85–94.Google Scholar
  41. Liu, W., Gopal, S., & Woodcock, C. E. (2004). Uncertainty and confidence in land cover classification using a hybrid classifier approach. Photogrammetric Engineering and Remote Sensing, 70(8), 963–971.CrossRefGoogle Scholar
  42. MacQueen, R. W., & Meinert, L. D. (Eds.). (2006). Fine wines and terroir: The geoscience prespective. St. John’s, Newfoundland: Geological Association of Canada.Google Scholar
  43. Magarey, R., Seem, R. C., & DeGloria, S. D. (1998). Prediction of vineyard site suitability. Grape Research News, 9, 1–2.Google Scholar
  44. Malheiro, A. C., Santos, J. A., Fraga, H., & Pinto, J. G. (2010). Climate change scenarios applied to viticultural zoning in Europe. Climate Research, 43, 163–177.CrossRefGoogle Scholar
  45. McKinion, J. M., Willers, J. L., & Jenkins, J. N. (2010a). Spatial analyses to evaluate multi-crop yield stability for a field. Computers and Electronics in Agriculture, 70, 187–198.CrossRefGoogle Scholar
  46. McKinion, J. M., Willers, J. L., & Jenkins, J. N. (2010b). Comparing high density LIDAR and medium resolution GPS generated elevation data for predicting yield stability. Computers and Electronics in Agriculture, 74(2), 244–249.CrossRefGoogle Scholar
  47. Meinert, L., & Curtin, T. (2005). Terroir of the Finger Lakes of New York. In: Bettison-Varga L, et al., (eds). 18th Keck Symposium. The Colorado College, Colorado Springs. Keck Geology Consortium, 34–40Google Scholar
  48. Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., et al. (2004). The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. Journal of Geophysical Research.  https://doi.org/10.1029/2003JD003823.Google Scholar
  49. Morari, F., Castrignano, A., & Pagliarin, C. (2009). Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geo-electrical sensors. Computers and Electronics in Agriculture, 68, 97–107.CrossRefGoogle Scholar
  50. Morlat, R., & Lebon, E. (1992). Experience of multisite trials for the study of vineyards. Prog. Agric. Vitic., 109, 55–58.Google Scholar
  51. Mullins, M. G., Bouquet, A., & Williams, L. E. (1992). Biology of the grapevine. Cambridge, New York: Cambridge University Press.Google Scholar
  52. NASS. National Agricultural Statistics Service. (2015). CropScape and Cropland Data Layer. Retrieved September 10, 2017, from http://www.nass.usda.gov/Research_and_Science/Cropland/Release/last
  53. Nisar Ahamed, T. R., Gopal Rao, K., & Murthy, J. S. R. (2000). GIS-based fuzzy membership model for crop-land suitability analysis. Agricultural Systems, 63(2), 75–95.CrossRefGoogle Scholar
  54. NRCS. Natural Resources Conservation Service. (2015). Description of Gridded Soil Survey Geographic (gSSURGO). Retrieved September 10, 2017, from http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053627
  55. Paoli, J. N., Tisseyre, B., Zebic, O., & Guillaume, S. (2005). Determination and mapping of vineyard potentials: an expert approach/De´termination et cartographie des potentialite´s viticoles: une approche experte. Progre`s Agricole et Viticole, vol 122, pp. 508–511.Google Scholar
  56. Perrot, N., Baudrit, C., Brousset, J. M., Abbal, P., Guillemin, H., Perret, B., et al. (2015). A decision support system coupling fuzzy logic and probabilistic graphical approaches for the agri-food industry: Prediction of grape berry maturity. PLoS ONE, 10(7), e0134373.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Quezada, C., Soriano, M., Díaz, J., Merino, R., Chandía, A., Campos, J., et al. (2014). Influence of soil physical properties on grapevine yield and maturity components in an ultic palexeralf soils, Central-Southern, Chile. Open Journal of Soil Science, 4, 127–135.CrossRefGoogle Scholar
  58. Ramos, M. C., Jones, G. V., & Martínez-Casasnovas, J. A. (2008). Structure and trends in climate parameters affecting winegrape production in northeast Spain. Climate Research, 38, 1–15.CrossRefGoogle Scholar
  59. Reza, B. K. (2005). A new method for site suitability analysis: The analytic hierarchy process. Environmental Management, 13(6), 685–693.Google Scholar
  60. Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.Google Scholar
  61. Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.CrossRefGoogle Scholar
  62. Sanga-Ngoie, K., Kumara, K. J. C. & Kobayashi, S. (2010). Potential grape–growing sites in the tropics: Exploration and zoning using a gis multi-criteria evaluation approach: Proceedings of Asian Association on Remote Sensing. pp. 6.Google Scholar
  63. Santos, J. A., Malheiro, A. C., Pinto, J. G., & Jones, G. V. (2012). Macroclimate and viticultural zoning in Europe: Observed trends and atmospheric forcing. Climate Research, 51, 89–103.CrossRefGoogle Scholar
  64. Seguin, G. (1984). Les terroirs viticoles des grands crus du Bordelais. Cours DEA polycopié.Google Scholar
  65. Spomer, R. G., & Piest, R. F. (1982). Soil productivity and erosion of Iowa loess soils. Transactions of the American Society of Agricultural Engineers, 25, 1295–1299.CrossRefGoogle Scholar
  66. Stone, J. R., Gilliam, J. W., Cassel, D. K., Daniels, R. B., Nelson, L. A., & Kleiss, H. J. (1985). Effect of erosion and landscape position on the productivity of Piedmont soils. Soil Science Society of America Journal, 49, 987–991.CrossRefGoogle Scholar
  67. Tagarakis, A., Koundouras, S., Papageorgiou, E. I., Dikopoulou, Z., Fountas, S., & Gemtos, T. A. (2014). A fuzzy inference system to model grape quality in vineyards. Precision Agriculture, 15(5), 555–578.CrossRefGoogle Scholar
  68. Tagarakis, A., Liakos, V., Fountas, S., Koundouras, S., & Gemtos, T. A. (2013). Management zones delineation using fuzzy clustering techniques in grapevines. Precision Agriculture, 14(1), 18–39.CrossRefGoogle Scholar
  69. Tavana, M., Liu, W., Elmore, P., Petry, F. E., & Bourgeois, B. S. (2016). A practical taxonomy of methods and literature for managing uncertain spatial data in geographic information systems. Measurement, 81, 123–162.CrossRefGoogle Scholar
  70. UI GSM. (2015).The University of Idaho Gridded Surface Meteorological Dataset. Retrieved September 10, 2017, from http://metdata.northwestknowledge.net/
  71. Urretavizcaya, I., Santesteban, L. G., Tisseyre, B., Guillaume, S., Miranda, C., & Royo, J. B. (2014). Oenological significance of vineyard management zones delineated using early grape sampling. Precision Agriculture, 14, 18–39.Google Scholar
  72. Van Leeuwen, C., & Seguin, G. (2006). The concept of terroir in viticulture. Journal of Wine Research, 17, 1–10.CrossRefGoogle Scholar
  73. Water Resource Department of Oregon (WRD). (2015). Water resources maps. Retrieved September 10, 2017, from http://www.oregon.gov/owrd/Pages/maps/index.aspx#Water_Right_Data/GIS_Themes
  74. Watkins, R. L. (1997). Vineyard site suitability in eastern California. GeoJournal, 43(3), 229–239.CrossRefGoogle Scholar
  75. White, R. E. (2009). Understanding Vineyard Soils (p. 230). New York, NY: Oxford University Press.Google Scholar
  76. Winkler, A. J., Cook, J. A., Kliewer, W. M., & Lider, L. A. (1974). General Viticulture (4th ed.). Berkeley: University of California Press.Google Scholar
  77. Wu, F. (1998). SimLand: A prototype to simulate land conversion through the integrated GIS and CA with AHP-derived transition rules. International Journal of Geographical Information Science, 12(1), 63–82.CrossRefGoogle Scholar
  78. Yau, I. H., Davenport, J. R., & Moyer, M. M. (2014). Developing a wine grape site evaluation decision support system for the Inland Pacific Northwestern United States. HortTechnology, 24(1), 88–98.Google Scholar
  79. Yau, I. H., Davenport, J. R., & Rupp, R. A. (2013). Characterizing Inland Pacific Northwest American viticultural areas with geospatial data. PLoS ONE, 8(4), e61.CrossRefGoogle Scholar
  80. Zadeh, L., Fu, K., Tanaka, K., & Shimura, M. (Eds.). (1975). Fuzzy sets and their applications to cognitive and decision processes. New York: Academic.Google Scholar
  81. Zhang, H. (2009). The analysis of the reasonable structure of water conservancy investment of capital construction in China by AHP method. Water Resources Management, 23(1), 1–18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.AgWeatherNet ProgramWashington State UniversityProsserUSA
  2. 2.Cornell Lake Erie Research and Extension LabCornell UniversityPortlandUSA
  3. 3.Institute for Sustainable Food Systems, University of FloridaGainesvilleUSA
  4. 4.Department of HorticultureWashington State UniversityProsserUSA
  5. 5.Department of Crop and Soil SciencesWashington State UniversityPullmanUSA
  6. 6.Department of Crop and Soil SciencesWashington State UniversityProsserUSA

Personalised recommendations