Skip to main content

Advertisement

Log in

Spatial suitability assessment for vineyard site selection based on fuzzy logic

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Developing a sustainable agricultural production system requires knowledge of the climate, soil, and topography of the area of interest. This is especially relevant for wine grape (Vitis vinefera L.) production. The main objective of this study was the development of a comprehensive system to aid in the selection of suitable areas for grapevine cultivation. Included in this system were several bioclimatic indices, such as Growing Degree Days (GDD), Frost Free Days (FFD), and the Huglin Index (HI) calculated over a period of 30 years using daily weather data obtained from the University of Idaho’s Gridded Surface Meteorological (UI GSM) dataset. Soil data and topographical data were also included in the system. The bioclimatic indices, soil, and topographic data were then transformed using fuzzy logic, and suitability maps with scores ranging from 0 to 1 were developed. The final vineyard-potential scores were obtained by combining the soil, weather, and topographic potential scores with a range from 0 to 1, where 0 pertained to non-suitable areas and 1 referred to optimal sites. The maps were evaluated by comparing the range of suitability scores of existing vineyards in Washington State. The evaluation indicated that 97% of the established vineyards have a vineyard-potential score that ranges from 0.8 to 1. The results of this study revealed that 11% of the total study area had a high potential for wine grape production. This study was able to successfully employ fuzzy logic to help decision-makers, growers, and others with conducting a precise land assessment for wine grape production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abatzoglou, J. T. (2011). Development of gridded surface meteorological data for ecological applications and modelling. International Journal of Climatology, 33(1), 121–131.

    Article  Google Scholar 

  • Boryan, C., Yang, Z., and Di, L. (2012). Deriving 2011 Cultivated Land Cover Data Sets Using USDA National Agricultural Statistics Service Historic Cropland Data Layers. In: Proceedings of the IGARSS 2012 Conference, Munich, Germany, July 23–26, 2012

  • Boryan, C., Yang, Z., Mueller, R., & Craig, M. (2011). Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service Cropland Data Layer Program”. Geocarto International, 26(5), 341–358.

    Article  Google Scholar 

  • Branas, J. (1974). Viticulture. Dehan, Montpellier: IMP.

    Google Scholar 

  • Carey, V., Archer, E., Barbeau, G., and Saayman, D. (2007). The use of local knowledge relating to vineyard performance to identify viticultural terroirs in Stellenbosch and surrounds. In: Nuzzo, V., Giorio, P., Giulivo, C. (Eds.): Proceedings of the International Workshop on Advances in Grapevine and Wine Research. International Society Horticultural Science, Leuven 1, pp. 385–391.

  • Coulon-Leroy, C., Charnomordic, B., Rioux, D., Thiollet-Scholtus, M., & Guillaume, S. (2012). Prediction of vine vigor and percosity using data and knowledge-based fuzzy interface systems. Journal International des Sciences de la Vigne et du Vin, 46, 185–205.

    Google Scholar 

  • Coulon-Leroy, C., Charnomordic, B., Thiollet-Scholtus, M., & Guillaume, S. (2013). Imperfect knowledge and data-based approach to model a complex agronomic feature—Application to vine vigor. Computers and Electronics in Agriculture, 99, 135–145.

    Article  Google Scholar 

  • Coulon-Leroy, C., Charnomordic, B., Thiollet-Scholtus, M., & Guillaume, S. (2014). Fuzzy modeling of a composite agronomical feature using fisPro: The case of vine vigor. In A. Laurent, O. Strauss, B. Bouchon-Meunier, & R. R. Yager (Eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 127–137). Berlin: Springer.

    Google Scholar 

  • Daly, C., Halbleib, M., Smith, J. L., Gibson, W. P., Doggett, M. K., Taylor, G. H., et al. (2008). Physiographically-sensitive mapping of temperature and precipitation across the conterminous United States. International Journal of Climatology, 28, 2031–2064.

    Article  Google Scholar 

  • Dougherty, P. H. (2012). The geography of wine: Regions, Terroir and Techniques. Berlin: Springer.

    Book  Google Scholar 

  • Dry, P. R., & Coombe, B. G. (Eds.). (2004). Viticulture Volume 1—Resources (2nd ed., p. 255). Adelaide, SA: Winetitles.

    Google Scholar 

  • Dry, P. R., & Smart, R. E. (1988). Viticulture. In B. G. Coombe & P. R. Dry (Eds.), Vineyard site selection. Adelaide, Australia: Winetitles.

    Google Scholar 

  • ECY (Department of Ecology State of Washington Website).(2015). Retrieved March 3, 2016, from http://www.ecy.wa.gov/programs/wr/rights/water-right-home.html

  • ESRI. (2015). ArcGIS. 10.2 Desktop. Redlands, CA: Environmental Systems Research Institute.

    Google Scholar 

  • FAO. (1976). A Frame Work for Land Evaluation, Soils Bulletin No. 32. Rome: UNO-FAO.

    Google Scholar 

  • Ferguson, J. C., Moyer, M. M., Mills, L. J., Hoogenboom, G., & Keller, M. (2014). Modeling Dormant Bud Cold Hardiness And Budbreak in 23 Vitis Genotypes Reveals Variation by Region of Origin. American Journal of Enology and Viticulture, 65, 59–71.

    Article  Google Scholar 

  • Ferguson, J. C., Tarara, J. M., Mills, L. J., Grove, G. G., & Keller, M. (2011). Dynamic thermal time model of cold hardiness for dormant grapevine buds. Annals of Botany, 107(3), 389–396.

    Article  Google Scholar 

  • Fisher, P. (1996). Boolean and fuzzy regions. In P. A. Burrough & A. Frank (Eds.), Geographic objects with indeterminate boundaries (pp. 87–94). London, UK: Taylor and Francis Publishing.

    Google Scholar 

  • Fragoulis, G., Trevisan, M., Capri, E., Guardo, A., & Sorce, A.(2007). EIOVI: An indicator for the environmental impact of organic viticulture based on a fuzzy expert system. In: Re, A. A. M., Del; Capri, E.; Fragoulis, G.; Trevisan, M. (Eds.) In 13th Symposium Pesticide Chemistry. Environmental fate and ecological effects of pesticides, pp. 623–632, Pavia: La Goliardica Pavese s.r.l

  • GDG (Geospatial Data Gateway). (2015). USDA. Retrieved September 10, 2017, from https://gdg.sc.egov.usda.gov/last

  • Gil, Y., Sinfort, C., Guillaume, S., Brunet, Y., & Palagos, B. (2008). Influence of micrometeorological factors on pesticide loss to the air during vine spraying: Data analysis with statistical and fuzzy inference models. Biosystems Engineering, 100, 184–197.

    Article  Google Scholar 

  • Gladstones, J. (1992). Viticulture and environment. Adelaide: Winetitles.

    Google Scholar 

  • Gladstones, J. (2011). Wine, terroir and climate change. Kent Town, South Australia: Wakefield Press.

    Google Scholar 

  • Grelier, M., Guillaume, S., Tisseyre, B., & Scholasch, T. (2007). Precision viticulture data analysis using fuzzy inference systems. Journal International des Sciences de la Vigne et du Vin, 41, 19–31.

    Google Scholar 

  • Han, W., Yang, Z., Di, L., & Mueller, R. (2012). Crops cape: A Web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision Support. Computers and Electronics in Agriculture, 84, 111–123.

    Article  Google Scholar 

  • Hidalgo, L. (2002). Tratado de viticultura general. Madrid: Ediciones Mundi-Prensa.

    Google Scholar 

  • Huglin, P. (1978). Nouveau mode d’e´valuation des possibilite´s he´liothermiques d’un milieu viticole, Comptes Rendus de l’Acade´mie d’Agriculture, pp. 117–126

  • Jackson, R. S. (2008). Wine science principles and applications (3rd ed.). Burlington, MA: Academic Press.

    Google Scholar 

  • Jackson, D. I., & Cherry, N. J. (1988). Prediction of a district’s grape-ripening capacity using a latitude-temperature index (LTI). American Journal of Enology and Viticulture, 39(1), 19–28.

    Google Scholar 

  • Jones, G. V. (2005). Climate change in the western United States grape growing regions. In Acta Horticulturae (ISHS) (Vol. 689, pp. 41–60).

  • Jones, G. V. (2006). Climate and terroir. Impacts of climate variability and change on Wine. In fine wine and terroir–the geoscience perspective. In R. W. Macqueen & L. D. Meinert (Eds.), Geoscience Canada Reprint Series Number 9 (p. 247). St. John’s, Newfoundland: Geological Association of Canada.

    Google Scholar 

  • Jones, G. V., Duff, A. A., Hall, A., & Myers, J. W. (2010). Spatial analysis of climate in winegrape growing regions in the western United States. American Journal of Enology and Viticulture, 61(3), 313–326.

    Google Scholar 

  • Jones, A. J., Mielke, L. N., Bartles, C. A., & Miller, C. A. (1989). Relationship of landscape position and properties to crop production. Journal of Soil and Water Conservation, 44, 328–332.

    Google Scholar 

  • Jones, G. V., Snead, N., & Nelson, P. (2004). Geology and wine 8—modeling viticultural landscapes: A GIS analysis of the terroir potential in the Umpqua valley of Oregon. Geoscience Canada, 31, 167–178.

    Google Scholar 

  • Keller, M. (2010). The science of grapevines (1st ed., p. 400). New York: Academic press.

    Google Scholar 

  • Kravchenko, A., & Bullock, D. G. (2000). Correlation of corn and soybean grain yield with topography and soil properties. Agronomy Journal, 92, 75–83.

    Article  Google Scholar 

  • Kurtural, S.K. (2007). Vineyard Site Selection. University of Kentucky Cooperative Extension Service

  • Kurtural, S. K., Dami, I. E., & Taylor, B. H. (2006). Utilizing GIS technologies in selection of suitable vineyard sites. International Journal of Fruit Science, 6, 87–107.

    Article  Google Scholar 

  • Lanyon, D.M., Cass, A., & Hansen, D. (2004). The effect of soil properties on wine performance. CSIRO, Land and Water Technical Report No. 34/4, 54 p.

  • Lee, S. I., & Lee, S. S. (2010). Development of site suitability analysis system for riverbank filtration. Water Science and Engineering, 3(1), 85–94.

    Google Scholar 

  • Liu, W., Gopal, S., & Woodcock, C. E. (2004). Uncertainty and confidence in land cover classification using a hybrid classifier approach. Photogrammetric Engineering and Remote Sensing, 70(8), 963–971.

    Article  Google Scholar 

  • MacQueen, R. W., & Meinert, L. D. (Eds.). (2006). Fine wines and terroir: The geoscience prespective. St. John’s, Newfoundland: Geological Association of Canada.

    Google Scholar 

  • Magarey, R., Seem, R. C., & DeGloria, S. D. (1998). Prediction of vineyard site suitability. Grape Research News, 9, 1–2.

    Google Scholar 

  • Malheiro, A. C., Santos, J. A., Fraga, H., & Pinto, J. G. (2010). Climate change scenarios applied to viticultural zoning in Europe. Climate Research, 43, 163–177.

    Article  Google Scholar 

  • McKinion, J. M., Willers, J. L., & Jenkins, J. N. (2010a). Spatial analyses to evaluate multi-crop yield stability for a field. Computers and Electronics in Agriculture, 70, 187–198.

    Article  Google Scholar 

  • McKinion, J. M., Willers, J. L., & Jenkins, J. N. (2010b). Comparing high density LIDAR and medium resolution GPS generated elevation data for predicting yield stability. Computers and Electronics in Agriculture, 74(2), 244–249.

    Article  Google Scholar 

  • Meinert, L., & Curtin, T. (2005). Terroir of the Finger Lakes of New York. In: Bettison-Varga L, et al., (eds). 18th Keck Symposium. The Colorado College, Colorado Springs. Keck Geology Consortium, 34–40

  • Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., et al. (2004). The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. Journal of Geophysical Research. https://doi.org/10.1029/2003JD003823.

    Article  Google Scholar 

  • Morari, F., Castrignano, A., & Pagliarin, C. (2009). Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geo-electrical sensors. Computers and Electronics in Agriculture, 68, 97–107.

    Article  Google Scholar 

  • Morlat, R., & Lebon, E. (1992). Experience of multisite trials for the study of vineyards. Prog. Agric. Vitic., 109, 55–58.

    Google Scholar 

  • Mullins, M. G., Bouquet, A., & Williams, L. E. (1992). Biology of the grapevine. Cambridge, New York: Cambridge University Press.

    Google Scholar 

  • NASS. National Agricultural Statistics Service. (2015). CropScape and Cropland Data Layer. Retrieved September 10, 2017, from http://www.nass.usda.gov/Research_and_Science/Cropland/Release/last

  • Nisar Ahamed, T. R., Gopal Rao, K., & Murthy, J. S. R. (2000). GIS-based fuzzy membership model for crop-land suitability analysis. Agricultural Systems, 63(2), 75–95.

    Article  Google Scholar 

  • NRCS. Natural Resources Conservation Service. (2015). Description of Gridded Soil Survey Geographic (gSSURGO). Retrieved September 10, 2017, from http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053627

  • Paoli, J. N., Tisseyre, B., Zebic, O., & Guillaume, S. (2005). Determination and mapping of vineyard potentials: an expert approach/De´termination et cartographie des potentialite´s viticoles: une approche experte. Progre`s Agricole et Viticole, vol 122, pp. 508–511.

  • Perrot, N., Baudrit, C., Brousset, J. M., Abbal, P., Guillemin, H., Perret, B., et al. (2015). A decision support system coupling fuzzy logic and probabilistic graphical approaches for the agri-food industry: Prediction of grape berry maturity. PLoS ONE, 10(7), e0134373.

    Article  Google Scholar 

  • Quezada, C., Soriano, M., Díaz, J., Merino, R., Chandía, A., Campos, J., et al. (2014). Influence of soil physical properties on grapevine yield and maturity components in an ultic palexeralf soils, Central-Southern, Chile. Open Journal of Soil Science, 4, 127–135.

    Article  Google Scholar 

  • Ramos, M. C., Jones, G. V., & Martínez-Casasnovas, J. A. (2008). Structure and trends in climate parameters affecting winegrape production in northeast Spain. Climate Research, 38, 1–15.

    Article  Google Scholar 

  • Reza, B. K. (2005). A new method for site suitability analysis: The analytic hierarchy process. Environmental Management, 13(6), 685–693.

    Google Scholar 

  • Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.

    Article  Google Scholar 

  • Sanga-Ngoie, K., Kumara, K. J. C. & Kobayashi, S. (2010). Potential grape–growing sites in the tropics: Exploration and zoning using a gis multi-criteria evaluation approach: Proceedings of Asian Association on Remote Sensing. pp. 6.

  • Santos, J. A., Malheiro, A. C., Pinto, J. G., & Jones, G. V. (2012). Macroclimate and viticultural zoning in Europe: Observed trends and atmospheric forcing. Climate Research, 51, 89–103.

    Article  Google Scholar 

  • Seguin, G. (1984). Les terroirs viticoles des grands crus du Bordelais. Cours DEA polycopié.

  • Spomer, R. G., & Piest, R. F. (1982). Soil productivity and erosion of Iowa loess soils. Transactions of the American Society of Agricultural Engineers, 25, 1295–1299.

    Article  Google Scholar 

  • Stone, J. R., Gilliam, J. W., Cassel, D. K., Daniels, R. B., Nelson, L. A., & Kleiss, H. J. (1985). Effect of erosion and landscape position on the productivity of Piedmont soils. Soil Science Society of America Journal, 49, 987–991.

    Article  Google Scholar 

  • Tagarakis, A., Koundouras, S., Papageorgiou, E. I., Dikopoulou, Z., Fountas, S., & Gemtos, T. A. (2014). A fuzzy inference system to model grape quality in vineyards. Precision Agriculture, 15(5), 555–578.

    Article  Google Scholar 

  • Tagarakis, A., Liakos, V., Fountas, S., Koundouras, S., & Gemtos, T. A. (2013). Management zones delineation using fuzzy clustering techniques in grapevines. Precision Agriculture, 14(1), 18–39.

    Article  Google Scholar 

  • Tavana, M., Liu, W., Elmore, P., Petry, F. E., & Bourgeois, B. S. (2016). A practical taxonomy of methods and literature for managing uncertain spatial data in geographic information systems. Measurement, 81, 123–162.

    Article  Google Scholar 

  • UI GSM. (2015).The University of Idaho Gridded Surface Meteorological Dataset. Retrieved September 10, 2017, from http://metdata.northwestknowledge.net/

  • Urretavizcaya, I., Santesteban, L. G., Tisseyre, B., Guillaume, S., Miranda, C., & Royo, J. B. (2014). Oenological significance of vineyard management zones delineated using early grape sampling. Precision Agriculture, 14, 18–39.

    Google Scholar 

  • Van Leeuwen, C., & Seguin, G. (2006). The concept of terroir in viticulture. Journal of Wine Research, 17, 1–10.

    Article  Google Scholar 

  • Water Resource Department of Oregon (WRD). (2015). Water resources maps. Retrieved September 10, 2017, from http://www.oregon.gov/owrd/Pages/maps/index.aspx#Water_Right_Data/GIS_Themes

  • Watkins, R. L. (1997). Vineyard site suitability in eastern California. GeoJournal, 43(3), 229–239.

    Article  Google Scholar 

  • White, R. E. (2009). Understanding Vineyard Soils (p. 230). New York, NY: Oxford University Press.

    Google Scholar 

  • Winkler, A. J., Cook, J. A., Kliewer, W. M., & Lider, L. A. (1974). General Viticulture (4th ed.). Berkeley: University of California Press.

    Google Scholar 

  • Wu, F. (1998). SimLand: A prototype to simulate land conversion through the integrated GIS and CA with AHP-derived transition rules. International Journal of Geographical Information Science, 12(1), 63–82.

    Article  Google Scholar 

  • Yau, I. H., Davenport, J. R., & Moyer, M. M. (2014). Developing a wine grape site evaluation decision support system for the Inland Pacific Northwestern United States. HortTechnology, 24(1), 88–98.

    Google Scholar 

  • Yau, I. H., Davenport, J. R., & Rupp, R. A. (2013). Characterizing Inland Pacific Northwest American viticultural areas with geospatial data. PLoS ONE, 8(4), e61.

    Article  Google Scholar 

  • Zadeh, L., Fu, K., Tanaka, K., & Shimura, M. (Eds.). (1975). Fuzzy sets and their applications to cognitive and decision processes. New York: Academic.

    Google Scholar 

  • Zhang, H. (2009). The analysis of the reasonable structure of water conservancy investment of capital construction in China by AHP method. Water Resources Management, 23(1), 1–18.

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Washington State University’s AgWeatherNet Program, the Northwest Center for Small Fruits Research, and an IBM Fellowship awarded to the corresponding author. The authors would like to thank the United States Department of Agriculture Geospatial Gateway website for providing access to the soil and topography datasets and the University of Idaho Gridded Surface Meteorological Data (UofI METDATA) for providing access to the raw weather data that were used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golnaz Badr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badr, G., Hoogenboom, G., Moyer, M. et al. Spatial suitability assessment for vineyard site selection based on fuzzy logic. Precision Agric 19, 1027–1048 (2018). https://doi.org/10.1007/s11119-018-9572-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-018-9572-7

Keywords

Navigation