Skip to main content
Log in

Development and evaluation of an automatic software for management zone delineation

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The lack of availability of user-friendly and automatic software for management zone delineation is limiting the adoption of site-specific management practices. Several procedures for management zone delineation have been proposed, but they commonly require the use of different software, or advanced GIS and statistical skills of users, which limit their adoption. This study proposes a user-friendly and automatic software that would integrate all steps in order to delineate management zones and make prescription files. The software includes importation of different input data layers, re-projection and resizing data in a common grid size. An integrative index was proposed for the selection of the optimal number of zones after clustering analysis. Users are guided by graphical windows showing intermediate results. Also, additional automatic post-processing techniques to improve size, shape and fragmentation of delineated zones are available. The final step allows generation of the ESRI Shapefile required to make variable rate prescriptions by zone with minimal user intervention. The performance of the approach was evaluated for management zone delineation using single and multiple layers of data by comparing with Management Zone Analyst software, and the improvement of the approach in the selection of the optimal number of zones and reducing zone-fragmentation was shown. The software design includes a simple graphical user interface and requires minimal user intervention in order to assist the end-user. The main contribution of this work was the successful development of this automatic user-friendly solution that includes all the necessary steps for management zone delineation and prescription file generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acharya, T., & Ray, A. K. (2005). Image processing: Principles and applications. Hoboken, NJ, USA: Wiley.

    Book  Google Scholar 

  • Aguilar Torres, F. J., Torres, M. A. A., Vega, F. A., Ramirez, F. C., & Salmerón, P. L. S. (2005). Efectos de la morfología del terreno, densidad muestral y métodos de interpolación en la calidad de los modelos digitales de elevaciones (Effects of the terrain morphology, sample density and interpolation methods in the quality of digital elevation models). In XIV Congreso Internacional de ngeniería Gráfica, Universidad de Almería (España) (pp. 1–13).

  • Bezdeck, J. C., Ehrlich, R., & Full, W. (1984). FCM: Fuzzy C-means algorithm. Computers and Geoscience, 10(2–3), 191–203.

    Article  Google Scholar 

  • Blanchette, J., & Summerfield, M. (2006). C++ GUI programming with Qt 4 (2nd ed.). Upper Saddle River, NJ, USA: Prentice-Hall.

    Google Scholar 

  • Brock, A., Blumhoff, S., Brouder, G., & Hofmann, B. (2005). Defining yield-based management zones for corn–soybean rotations. Agronomy Journal, 97(4), 1115–1128.

    Article  Google Scholar 

  • Bugayevskiy, L. M., & Snyder, J. (1995). Map projections: A reference manual. Boca Raton, FL, USA: CRC Press. ISBN. 9780748403042

  • Cid-Garcia, N. M., Albornoz, V., Rios-Solis, Y. A., & Ortega, R. (2013). Rectangular shape management zone delineation using integer linear programming. Computers and Electronics in Agriculture, 93, 1–9.

    Article  Google Scholar 

  • Cordoba, M., Bruno, C., Costa, J., & Balzarini, M. (2013). Subfield management class delineation using cluster analysis from spatial principal components of soil variables. Computers and Electronics in Agriculture, 97, 6–14.

    Article  Google Scholar 

  • Cordoba, M. A., Bruno, C. I., Costa, J. L., Peralta, N. R., & Balzarini, M. G. (2016). Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosystems Engineering, 143, 95–107.

    Article  Google Scholar 

  • Doberman, A., Ping, J., Adamchuk, V., Simbahan, G., & Ferguson, R. (2003). Classification of crop yield variability in irrigated production fields. Agronomy Journal, 95(5), 1105–1120.

    Article  Google Scholar 

  • Doerge, T. (1999). Management zone concepts. In S. Clay, et al. (Eds.) SSMG#2. Site specific management guidelines. Norcross, GA, USA: Potash and Phosphate Institute. Retrieved April 4, 2017, from http://ppi-far.org/ssmg.

  • Dunn, J. C. (1974). Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 4, 95–104.

    Article  Google Scholar 

  • Fleming, K., Westfall, D., Wiens, D., & Brodahl, M. (2000). Evaluating farmer defined management zone maps for variable rate fertilizer application. Precision Agriculture, 2(2), 201–215.

    Article  Google Scholar 

  • Fraisse, C. W., Sudduth, K. A., & Kitchen, N. R. (2001). Delineation of site-specific management zones by unsupervised classification of topographic attributes and soil electrical conductivity. Transactions of ASABE, 44, 155166.

    Article  Google Scholar 

  • Fridgen, J. J., Kitchen, N. R., Drummond, K. A. S., Wiebold, S. T., & Fraisse, C. W. (2004). Software Management Zone Analyst (MZA): Software for subfield management zone delineation. Agronomy Journal, 96, 101–107.

    Google Scholar 

  • Frogbrook, Z. L., & Oliver, M. A. (2007). Identifying management zones in agricultural fields using spatially constrained classification of soil and ancillary data. Soil Use and Management, 23(1), 40–51.

    Article  Google Scholar 

  • Galarza, R., Mastaglia, N., Albornoz, E. M., & Martinez, C. E. (2013). Identificación automática de zonas de manejo en lotes productivos agrícolas (Automatic identification of management zones in agricultural production lots). In 5th Congreso Argentino de Agroinformática. (CAI)—42da. JAIIO, Córdoba, Argentina. Retrieved May 20, 2017, from http://fich.unl.edu.ar/sinc/sinc-publications/2013/GMAM13.

  • Gonzalez, R. C., & Woods, R. (2008). Digital image processing. Upper Saddle River, NJ, USA: Pearson Prentice Hall. ISBN 0-13-168728-x 978-0-13-168728-8.

  • Guastaferro, F., Castrignano, A., Benedetto, D., Sollitto, D., Troccoli, A., & Cafarelli, B. (2010). A comparison of different algorithms for the delineation of management zones. Precision Agriculture, 11(6), 600–620.

    Article  Google Scholar 

  • Hornung, A., Khosla, R., Reich, R., Inman, D., & Westfall, D. G. (2006). Comparison of site-specific management zones: Soil-color-based and yield-based. Agronomy Journal, 98(2), 407–415.

    Article  Google Scholar 

  • Jaynes, D., Kaspar, T., Colvin, T., & James, D. (2003). Cluster analysis of spatiotemporal corn yield patterns in an Iowa field. Agronomy Journal, 95(3), 574–586.

    Article  Google Scholar 

  • McBratney, A., Whelan, B., Ancev, T., & Bouma, J. (2005). Future directions of precision agriculture. Precision Agriculture, 6(1), 7–23.

    Article  Google Scholar 

  • Milne, A., Webster, R., Ginsburg, D., & Kindred, D. (2012). Spatial multivariate classification of an arable field into compact management zones based on past crop yields. Computers and Electronics in Agriculture, 80, 17–30.

    Article  Google Scholar 

  • Minasny, B., & McBratney, A. (2002). FuzME version 3.5. Australian Centre for Precision Agriculture, The University of Sydney, Australia. Retrieved July 13, 2016, from http://sydney.edu.au/agriculture/pal/software/fuzme.shtml.

  • Mzuku, M., Khosla, R., Reich, R., Inman, D., Smith, F., & MacDonald, L. (2005). Spatial variability of measured soil properties across site-specific management zones. Soil Science Society of America Journal, 69(5), 1572–1579.

    Article  CAS  Google Scholar 

  • Odeh, I., McBratney, A., & Chittleborough, D. (1992). Soil pattern recognition with fuzzy-C-means: Application to classification and soil–landform interrelationships. Soil Science Society of America Journal, 56(2), 505–516.

    Article  Google Scholar 

  • Pedroso, M., Taylor, J., Tisseyre, B., Charnomordic, B., & Guillaume, S. (2010). A segmentation algorithm for the delineation of agricultural management zones. Computers and Electronics in Agriculture, 70(1), 199–208.

    Article  Google Scholar 

  • Peralta, N. R., Costa, J. L., Balzarini, M., Franco, M. C., Cordoba, M., & Bullock, D. (2015). Delineation of management zones to improve nitrogen management of wheat. Computers and Electronics in Agriculture, 110, 103–113.

    Article  Google Scholar 

  • Ping, J., & Dobermann, A. (2003). Creating spatially contiguous yield classes for site-specific management. Agronomy Journal, 95(5), 1121–1131.

    Article  Google Scholar 

  • QGIS Development Team. (2009). QGIS geographic information system. Open Source Geospatial Foundation. Retrieved May 16, 2017, from http://qgis.osgeo.org.

  • Roudier, P., Tisseyre, B., Poilvie, H., & Roger, J. M. (2008). Management zone delineation using a modified watershed algorithm. Precision Agriculture, 9(5), 233–250.

    Article  Google Scholar 

  • Roudier, P., Tisseyre, B., Poilvie, H., & Roger, J. M. (2011). A technical opportunity index adapted to zone-specific management. Precision Agriculture, 12(1), 130–145.

    Article  Google Scholar 

  • Schepers, A., Shanahan, J., Liebig, M., Schepers, J., Johnson, S., & Luchiari, A. (2004). Appropriateness of management zones for characterizing spatial variability of soil properties and irrigated corn yields across years. Agronomy Journal, 96, 195–203.

    Article  Google Scholar 

  • Shaner, D. L., Khosla, R., Brodahl, M. K., Buchleiter, G. W., & Farahani, H. J. (2008). How well does zone sampling based on soil electrical conductivity maps represent soil variability? Agronomy Journal, 100(5), 1472–1480.

    Article  Google Scholar 

  • Taylor, J. A., McBratney, A. B., & Whelan, B. M. (2007). Establishing management classes for broadacre agricultural production. Agronomy Journal, 99(5), 1366–1376.

    Article  Google Scholar 

  • The CGAL Project. (2017). CGAL user and reference manual (Ver 4.9.1). CGAL Editorial Board. Retrieved May 16, 2017, from http://doc.cgal.org/4.9.1/Manual/packages.html.

  • Warmerdam, F. (1999). Shapefile C library. Retrieved May 28, 2017, from http://shapelib.maptools.org.

  • Xie, X. L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 841–847.

    Article  Google Scholar 

  • Zhang, X., Shi, L., Jia, X., Seielstad, G., & Helgason, C. (2010). Zone mapping application for precision-farming: A decision support tool for variable rate application. Precision Agriculture, 11(2), 103–114.

    Article  CAS  Google Scholar 

  • Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—A worldwide overview. Computers and Electronics in Agriculture, 36(2), 113–132.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Agencia Nacional de Promoción Científica y Tecnológica and Universidad Nacional del Litoral (with PACT 2011 #58, CAI+D 2011 #58-511) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) in Argentina, for their support; and to Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Paraná (INTA) (with Project PNAIyAV 1130023) in Argentina, for their support and experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra C. Kemerer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albornoz, E.M., Kemerer, A.C., Galarza, R. et al. Development and evaluation of an automatic software for management zone delineation. Precision Agric 19, 463–476 (2018). https://doi.org/10.1007/s11119-017-9530-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-017-9530-9

Keywords

Navigation