Skip to main content
Log in

Functional Analysis of the Gossypium arboreum Genome

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Gossypium arboreum is an Old World relative of the more commonly cultivated commercial species Gossypium hirsutum, a newer genetic line formed in the New World. G. arboreum has the important property that it can be cultivated in severely hot, dry climates. The genome of G. arboreum has not been completely sequenced, and annotation for the genome is not extensive. We studied the genome of G. arboreum by using cross-species hybridization studies with genomic microarrays for the more annotated species, Arabidopsis thaliana and Oryza sativa. Approximately 30% of the probes on the A. thaliana and O. sativa microarrays were hybridized effectively by target samples prepared from G. arboreum genomic DNA. Many of genes tentatively identified by hybridization function in various levels of the stress response. Cross-species hybridization can provide effective clues as to potentially valuable genes that may be present in a less well-studied species such as G. arboreum. The stress response genes tentatively identified in these studies should provide useful clues for further studies toward the development of hardier strains of cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arenas-Huertero F, Arroyo A, Zhou L et al (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096

    CAS  PubMed  Google Scholar 

  • Barthelson RA, Lambert GM, Vanier C et al (2007) Comparison of the contributions of the nuclear and cytoplasmic compartments to global gene expression in human cells. BMC Genomics 8:340

    Article  PubMed  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M et al (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  • Carpenter CD, Kreps JA, Simon AE (1994) Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol 104:1015–1025

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Choi H-I, Hong J-H, Ha J-O et al (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Ghassemian M, Lutes J, Chang H-S et al (2008) Abscisic acid-induced modulation of metabolic and redox control pathways in Arabidopsis thaliana. Phytochemistry 69:2899–2911

    Article  CAS  PubMed  Google Scholar 

  • Grover CE, Yu Y, Wing RA et al (2008) A phylogenetic analysis of indel dynamics in the cotton genus. Mol Biol Evol 25:1415–1428

    Article  CAS  PubMed  Google Scholar 

  • Guan XY, Li QJ, Shan CM et al (2008) The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2. Physiol Plant 134:174–182

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Xiong L, Song CP et al (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233–244

    Article  CAS  PubMed  Google Scholar 

  • Himmelbach A, Hoffmann T, Leube M et al (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21:3029–3038

    Article  CAS  PubMed  Google Scholar 

  • Hinchliffe SJ, Isherwood KE, Stabler RA et al (2003) Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. Genome Res 13:2018–2029

    Article  CAS  PubMed  Google Scholar 

  • Hovav R, Chaudhary B, Udall JA et al (2008) Parallel domestication, convergent evolution and duplicated gene recruitment in allopolyploid cotton. Genetics 179:1725–1733

    Article  PubMed  Google Scholar 

  • Kandlbinder A, Finkemeier I, Wormuth D et al (2004) The antioxidant status of photosynthesizing leaves under nutrient deficiency: redox regulation, gene expression and antioxidant activity in Arabidopsis thaliana. Physiol Plant 120:63–73

    Article  CAS  PubMed  Google Scholar 

  • Kantartzi S, Ulloa M, Sacks E et al (2009) Assessing genetic diversity in Gossypium arboreum L. cultivars using genomic and EST-derived microsatellites. Genetica 136:141–147

    Article  CAS  PubMed  Google Scholar 

  • Kassahn KS (2008) Microarrays for comparative and ecological genomics: beyond single-species applications of array technologies. J Fish Biol 72:2407–2434

    Article  CAS  Google Scholar 

  • Katagiri T, Ishiyama K, Kato T et al (2005) An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. Plant J 43:107–117

    Article  CAS  PubMed  Google Scholar 

  • Kim YO, Kang H (2006) The role of a zinc finger-containing glycine-rich RNA-binding protein during the cold adaptation process in Arabidopsis thaliana. Plant Cell Physiol 47:793–798

    Article  PubMed  CAS  Google Scholar 

  • Kim KN, Cheong YH, Grant JJ et al (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411–423

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Park SJ, Kwak KJ et al (2007) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res 35:506–516

    Article  CAS  PubMed  Google Scholar 

  • Koiwa H, Barb AW, Xiong L et al (2002) C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proc Natl Acad Sci USA 99:10893–10898

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Bohner A, Gassert B et al (2007) AtDUR3 represents the major transporter for high-affinity urea transport across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 52:30–40

    Article  CAS  PubMed  Google Scholar 

  • Koltai H, Weingarten-Baror C (2008) Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction. Nucleic Acids Res 36:2395–2405

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM et al (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed  Google Scholar 

  • Liu CL, Schreiber SL, Bernstein BE (2003) Development and validation of a T7 based linear amplification for genomic DNA. BMC Genomics 4:19

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Han MH, Guevara-Garcia A et al (2002) Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci USA 99:15812–15817

    Article  CAS  PubMed  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Tohge T et al (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18:3235–3251

    Article  CAS  PubMed  Google Scholar 

  • Mehetre SS, Aher AR, Gawande VL, Patil VR, Mokate AS (2003) Induced polyploidy in Gossypium: a tool to overcome interspecific incompatibility of cultivated tetraploid and diploid cottons. Curr Sci 84:1510–1512

    Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25:295–303

    Article  CAS  PubMed  Google Scholar 

  • Mori IC, Murata Y, Yang Y et al (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca(2+)-permeable channels and stomatal closure. PLoS Biol 4:e327

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Keith K, McCourt P et al (1994) Isolation of an internal deletion mutant of the Arabidopsis thaliana ABI3 gene. Plant Cell Physiol 35:509–513

    CAS  PubMed  Google Scholar 

  • Ni YX, Wang XL, Li DD et al (2008) Novel cotton homeobox gene and its expression profiling in root development and in response to stresses and phytohormones. Acta Biochim Biophys Sin 40:78–84

    CAS  PubMed  Google Scholar 

  • Niu C, Lister HE, Nguyen B et al (2008) Resistance to Thielaviopsis basicola in the cultivated A genome cotton. Theor Appl Genet 117:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Park Y-H, Alabady M, Ulloa M et al (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Gen Genomics 274:428–441

    Article  CAS  Google Scholar 

  • Rong J, Abbey C, Bowers JE et al (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Callahan FE, Dollar DA, Creech JB (1997) Lyophilization of cotton tissue on quality of extractable DNA, RNA and protein. J Cotton Sci 1:10–14

    CAS  Google Scholar 

  • Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667

    Article  CAS  PubMed  Google Scholar 

  • Thayer SS, St Clair SB, Field CB et al (2008) Accentuation of phosphorus limitation in Geranium dissectum by nitrogen: an ecological genomics study. Glob Chang Biol 14:1877–1890

    Article  Google Scholar 

  • Usadel B, Nagel A, Thimm O et al (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138:1195–1204

    Article  CAS  PubMed  Google Scholar 

  • Vorwerk S, Biernacki S, Hillebrand H et al (2001) Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster. Planta 212:508–516

    Article  CAS  PubMed  Google Scholar 

  • Wagner U, Edwards R, Dixon DP et al (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49:515–532

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wang JW, Yu N et al (2004) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16:2323–2334

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis DT, McCourt P, Huang Y (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Xu Y, Li HB, Zhu YX (2007) Molecular biological and biochemical studies reveal new pathways important for cotton fiber development. J Integr Plant Biol 49:69–74

    Article  CAS  Google Scholar 

  • Yee JC, Wlaschin KF, Chuah SH et al (2008) Quality assessment of cross-species hybridization of CHO transcriptome on a mouse DNA oligo microarray. Biotechnol Bioeng 101:1359–1365

    Article  CAS  PubMed  Google Scholar 

  • Zhang HB, Li Y, Wang B et al (2008) Recent advances in cotton genomics. Int J Plant Genomics 2008:742304

    PubMed  Google Scholar 

Download references

Acknowledgments

Uzma Quaisar was supported by a UNESCO Fellowship Program in Support of Priority Program Areas (2006–2007). We thank Georgina Lambert for her constructive comments in the preparation of this manuscript.

Authors’ contributions

Roger Barthelson helped develop the goals for this project, guided the laboratory work, performed much of the advanced annotational analysis, and did most of the writing for the manuscript. Uzma Qaisar performed all of the experimental work, helped develop the aims of the project, did most of the primary analysis, and wrote the results for the manuscript. David Galbraith provided laboratory space, funding for materials, including the microarrays, which were printed in his laboratory, and some training for Uzma Qaisar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger A. Barthelson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional Table 1

A comparison of hybridization vs. homology with known Gossypium species sequences for some of the microarray probes on the Arabidopsis and Oryza microarrays (XLS 17 kb)

Supplemental Figure 1

Mapping of G. arboreum homologs on the G. hirsutum genome. The sequences for Arabidopsis microarray oligonucleotides that were significantly hybridized by the G. arboreum genomic DNA were used for BLAST analysis against the G. hirsutum genome. Here, the number of homologs found by BLAST is plotted for each chromosome. Refer to Rong et al. 2004 Genetics 166:389-417 (DOC 189 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthelson, R.A., Qaisar, U. & Galbraith, D.W. Functional Analysis of the Gossypium arboreum Genome. Plant Mol Biol Rep 28, 334–343 (2010). https://doi.org/10.1007/s11105-009-0157-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-009-0157-5

Keywords

Navigation