Advertisement

Plant and Soil

, Volume 415, Issue 1–2, pp 257–268 | Cite as

Drought inhibits synergistic interactions of native and exotic litter mixtures during decomposition in temperate grasslands

  • Michael J. Schuster
  • Jürgen Kreyling
  • Sigi Berwaers
  • Julia Walter
  • Hans J. De Boeck
  • Jürgen Dengler
  • Ivan Nijs
  • Anke Jentsch
Regular Article

Abstract

Background and aims

Leaf litters commonly interact during decomposition in ways that can synergistically increases rates of decay. These interactions have been linked to moisture availability, suggesting that drought could slow decomposition rates by disrupting litter interactions. Slowed decomposition may reduce competitive ability of exotic species that exploit rapid decomposition rates as part of niche construction mechanisms. Here, we evaluated the impacts of drought on interactions between native and exotic species’ litter decomposition.

Methods

We considered litter mixtures of Lupinus polyphyllus (exotic N-fixing forb), Trifolium pratense (native N-fixing forb), Senecio inaequidens (exotic non-N-fixing forb), and Senecio jacobaea (native non-N-fixing forb) with the native grass Alopecurus pratensis and evaluated the difference between the observed rate of decay and the one expected based on species decomposing in monocultures. Litters were deployed in Belgium and Germany and exposed to a 56 day drought, which resembled local millennium drought (statistical recurrence of duration in local precipitation series >1000 years).

Results

Litter interactions reduced mass remaining by 81% in Belgium and 15% in Germany, averaged across mixtures. Similarly, litter interactions reduced N remaining by 93% in Belgium and 14% in Germany. Drought consistently removed these interactions and resulted in additive litter decay. Litters of native and exotic species did not differ in their response to drought.

Conclusions

These findings support moisture availability as a key regulator of interactions between litters during decomposition. Thus, increasing frequency of drought may slow nutrient cycling to a greater extent than previously thought.

Keywords

Non-additive effect Mixture Climate change Precipitation Litter Invasion Invasive 

Notes

Acknowledgements

We would like to thank members of the SIGNAL collaboration (http://www.bayceer.uni-bayreuth.de/signal/) for use of their Belgian and German sites and Geert Bernaerts for assistance with environmental monitoring at the Belgian site. SIGNAL was funded by the ERA-Net BiodivERsA, with the national funders Belgian Science Policy Office (BELSPO), Bulgarian Science Fund (BNSF), Ministère de l’Écologie, du Développement durable et de l’Énergie de la République Française (MEDDE) and German Federal Ministry of Education and Research (BMBF), as part of the 2011 − 2012 BiodivERsA call for research proposals. MJS was advised by Jeffrey S. Dukes and supported by USDA Agro-ecosystem Services National Needs Fellowship and International Research Travel Allowance. We would also like to thank two anonymous reviewers for their role in improving the manuscript.

Supplementary material

11104_2016_3162_MOESM1_ESM.pdf (937 kb)
ESM 1 (PDF 937 kb)

References

  1. Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449. doi: 10.2307/3546886 CrossRefGoogle Scholar
  2. Arthur MA, Bray SR, Kuchle CR, McEwan RW (2012) The influence of the invasive shrub, Lonicera Maackii, on leaf decomposition and microbial community dynamics. Plant Ecol 213:1571–1582. doi: 10.1007/s11258-012-0112-7 CrossRefGoogle Scholar
  3. Ashton I, Hyatt L, Howe K et al (2005) Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol Appl 15:1263–1272. doi: 10.1890/04-0741 CrossRefGoogle Scholar
  4. Attiwill P, Adams M (1993) Nutrient cycling in forests. New Phytol 124:561–582. doi: 10.1111/j.1469-8137.1993.tb03847.x CrossRefGoogle Scholar
  5. Austin AT, Yahdjian L, Stark JM et al (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235. doi: 10.1007/s00442-004-1519-1 CrossRefPubMedGoogle Scholar
  6. Ball BA, Bradford MA, Hunter MD (2009) Nitrogen and phosphorus release from mixed litter layers is lower than predicted from single species decay. Ecosystems 12:87–100. doi: 10.1007/s10021-008-9208-2 CrossRefGoogle Scholar
  7. Cavaleri MA, Sack L (2010) Comparative water use of native and invasive plants at multiple scales: a global meta-analysis. Ecology 91:2705–2715. doi: 10.1890/09-0582.1 CrossRefPubMedGoogle Scholar
  8. Chen B-M, Peng S-L, D’Antonio CM et al (2013) Non-additive effects on decomposition from mixing litter of the invasive Mikania Micrantha H.B.K. With native plants. PLoS One 8:e66289. doi: 10.1371/journal.pone.0066289 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dreesen FE, De Boeck HJ, Janssens IA, Nijs I (2012) Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environ Exp Bot 79:21–30. doi: 10.1016/j.envexpbot.2012.01.005 CrossRefGoogle Scholar
  10. Easterling DR, Meehl GA, Parmesan C et al (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi: 10.1126/science.289.5487.2068 CrossRefPubMedGoogle Scholar
  11. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. In: Futuyma D, Shafer H, Simberloff D (eds) Annual review of ecology, evolution, and systematics, vol 41. Annual Reviews, Palo Alto, pp 59–80Google Scholar
  12. Ellenberg H, Leuschner C, Dierschke H (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. E. Ulmer, StuttgartGoogle Scholar
  13. Ernst WHO (1998) Invasion, dispersal and ecology of the south African neophyte Senecio inaequidens in the Netherlands: from wool alien to railway and road alien. Acta Bot Neerlandica Off Publ Ned Bot Ver 47:131–151Google Scholar
  14. Finerty GE, de Bello F, Bílá K et al (2016) Exotic or not, leaf trait dissimilarity modulates the effect of dominant species on mixed litter decomposition. J Ecol. doi: 10.1111/1365-2745.12602 Google Scholar
  15. Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246. doi: 10.1111/j.0030-1299.2004.12738.x CrossRefGoogle Scholar
  16. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218. doi: 10.1146/annurev.ecolsys.36.112904.151932 CrossRefGoogle Scholar
  17. Heneghan L, Clay C, Brundage C (2002) Rapid decomposition of buckthorn litter may change soil nutrient levels. Ecol Restor 20:108–111CrossRefGoogle Scholar
  18. Jentsch A (2013) Sending a SIGNAL – the mechanisms of grassland resilience. Res Media EU :21–23Google Scholar
  19. Jentsch A, Kreyling J, Elmer M et al (2011) Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol 99:689–702. doi: 10.1111/j.1365-2745.2011.01817.x CrossRefGoogle Scholar
  20. Kinugasa T, Tsunekawa A, Shinoda M (2012) Increasing nitrogen deposition enhances post-drought recovery of grassland productivity in the Mongolian steppe. Oecologia 170:857–865. doi: 10.1007/s00442-012-2354-4 CrossRefPubMedGoogle Scholar
  21. Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257CrossRefGoogle Scholar
  22. Kreyling J, Beierkuhnlein C, Ellis L, Jentsch A (2008) Invasibility of grassland and heath communities exposed to extreme weather events: additive effects of diversity resistance and fluctuating physical environment. Oikos 117:1542–1554CrossRefGoogle Scholar
  23. Kreyling J, Arfin Khan MAS, Sultana F et al (2016) Drought effects in climate change manipulation experiments: quantifying the influence of ambient weather conditions and rain-out shelter artifacts. Ecosystems. doi: 10.1007/s10021-016-0025-8 Google Scholar
  24. Lee MR, Flory SL, Phillips RP (2012) Positive feedbacks to growth of an invasive grass through alteration of nitrogen cycling. Oecologia 170:457–465. doi: 10.1007/s00442-012-2309-9 CrossRefPubMedGoogle Scholar
  25. Liao J, Hou Z, Wang G (2002) Effects of elevated CO2 and drought on chemical composition and decomposition of spring wheat (Triticum Aestivum). Funct Plant Biol 29:891–897CrossRefGoogle Scholar
  26. Liao C, Peng R, Luo Y et al (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714. doi: 10.1111/j.1469-8137.2007.02290.x CrossRefPubMedGoogle Scholar
  27. Liu P, Sun OJ, Huang J et al (2007) Nonadditive effects of litter mixtures on decomposition and correlation with initial litter N and P concentrations in grassland plant species of northern China. Biol Fertil Soils 44:211–216. doi: 10.1007/s00374-007-0195-9 CrossRefGoogle Scholar
  28. Loydi A, Donath TW, Eckstein RL, Otte A (2015) Non-native species litter reduces germination and growth of resident forbs and grasses: allelopathic, osmotic or mechanical effects? Biol Invasions 17:581–595. doi: 10.1007/s10530-014-0750-x CrossRefGoogle Scholar
  29. Lummer D, Scheu S, Butenschoen O (2012) Connecting litter quality, microbial community and nitrogen transfer mechanisms in decomposing litter mixtures. Oikos 121:1649–1655. doi: 10.1111/j.1600-0706.2011.20073.x CrossRefGoogle Scholar
  30. Makkonen M, Berg MP, van Logtestijn RSP et al (2013) Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122:987–997. doi: 10.1111/j.1600-0706.2012.20750.x CrossRefGoogle Scholar
  31. McTiernan KB, Ineson P, Coward PA (1997) Respiration and nutrient release from tree leaf litter mixtures. Oikos 78:527–538. doi: 10.2307/3545614 CrossRefGoogle Scholar
  32. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626. doi: 10.2307/1936780 CrossRefGoogle Scholar
  33. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331. doi: 10.2307/1932179 CrossRefGoogle Scholar
  34. Pfeifer-Meister L, Bridgham SD, Reynolds LL et al (2016) Climate change alters plant biogeography in Mediterranean prairies along the west coast, USA. Glob Change Biol 22:845–855. doi: 10.1111/gcb.13052 CrossRefGoogle Scholar
  35. Poulette MM, Arthur MA (2012) The impact of the invasive shrub Lonicera Maackii on the decomposition dynamics of a native plant community. Ecol Appl 22:412–424. doi: 10.1890/11-1105.1 CrossRefPubMedGoogle Scholar
  36. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  37. Reichstein M, Bahn M, Ciais P et al (2013) Climate extremes and the carbon cycle. Nature 500:287–295. doi: 10.1038/nature12350 CrossRefPubMedGoogle Scholar
  38. Robertson GP (1999) Standard soil methods for long-term ecological research. Oxford University Press, OxfordGoogle Scholar
  39. Santonja M, Fernandez C, Gauquelin T, Baldy V (2015) Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions. Plant Soil 393:69–82. doi: 10.1007/s11104-015-2471-z CrossRefGoogle Scholar
  40. Scherer-Lorenzen M (2008) Functional diversity affects decomposition processes in experimental grasslands. Funct Ecol 22:547–555. doi: 10.1111/j.1365-2435.2008.01389.x CrossRefGoogle Scholar
  41. Schimel D (1995) Terrestrial ecosystems and the carbon-cycle. Glob Change Biol 1:77–91. doi: 10.1111/j.1365-2486.1995.tb00008.x CrossRefGoogle Scholar
  42. Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394. doi: 10.1890/06-0219 CrossRefPubMedGoogle Scholar
  43. Schuster MJ, Dukes JS (2014) Non-additive effects of invasive tree litter shift seasonal N release: a potential invasion feedback. Oikos 123:1101–1111. doi: 10.1111/oik.01078 CrossRefGoogle Scholar
  44. Smith MD (2011) An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J Ecol 99:656–663. doi: 10.1111/j.1365-2745.2011.01798.x CrossRefGoogle Scholar
  45. Stocker T, Qin D, Plattner G-K et al (2014) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  46. Tardif A, Shipley B (2014) The relationship between functional dispersion of mixed-species leaf litter mixtures and species’ interactions during decomposition. Oikos. doi: 10.1111/oik.01686 Google Scholar
  47. Vetter V, Jentsch A, Buhk C, et al. (submitted) A global legume invader shows high resistance towards extreme weather events and competition – implications for the future invasion success of Lupinus polyphyllusGoogle Scholar
  48. Vogel A, Fester T, Eisenhauer N et al (2013) Separating drought effects from roof artifacts on ecosystem processes in a grassland drought experiment. PLoS One. doi: 10.1371/journal.pone.0070997 Google Scholar
  49. Walter J, Hein R, Beierkuhnlein C et al (2013) Combined effects of multifactor climate change and land-use on decomposition in temperate grassland. Soil Biol Biochem 60:10–18. doi: 10.1016/j.soilbio.2013.01.018 CrossRefGoogle Scholar
  50. Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258. doi: 10.2307/3546010 CrossRefGoogle Scholar
  51. Wright JP, Jones CG (2006) The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. Bioscience 56:203–209. doi: 10.1641/0006-3568(2006)056[0203:TCOOAE]2.0.CO;2 CrossRefGoogle Scholar
  52. Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93. doi: 10.1093/jpe/rtn002 CrossRefGoogle Scholar
  53. Zhang L, Zhang Y, Zou J, Siemann E (2014) Decomposition of Phragmites Australis litter retarded by invasive Solidago Canadensis in mixtures: an antagonistic non-additive effect. Sci Rep. doi: 10.1038/srep05488 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michael J. Schuster
    • 1
    • 2
  • Jürgen Kreyling
    • 3
  • Sigi Berwaers
    • 4
  • Julia Walter
    • 5
  • Hans J. De Boeck
    • 4
  • Jürgen Dengler
    • 6
    • 7
  • Ivan Nijs
    • 4
  • Anke Jentsch
    • 6
    • 8
  1. 1.Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA
  2. 2.Department of Forest ResourcesUniversity of MinnesotaSt. PaulUSA
  3. 3.Experimental Plant Ecology, Institute of Botany and Landscape EcologyGreifswald UniversityGreifswaldGermany
  4. 4.Centre of Excellence Plant and Vegetation Ecology, Department of BiologyUniversity of AntwerpWilrijkBelgium
  5. 5.Institute of Landscape and Plant EcologyUniversity of HohenheimStuttgartGermany
  6. 6.Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
  7. 7.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
  8. 8.Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany

Personalised recommendations