Skip to main content
Log in

PpCBFs selectively regulate PpDAMs and contribute to the pear bud endodormancy process

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

PpCBF2 directly binds to the promoters of PpCBF3 and PpCBF4 to activate their expressions and selectively regulates PpDAMs during the leaf bud endodormancy process of ‘Wonhwang’ pear (Pyrus pyrifolia).

Abstract

Endodormancy is critical for temperate plant survival under freezing winter conditions, and low temperature is a vital environmental factor in endodormancy regulation. A C-repeat binding factor (CBF) has been found to regulate important DAM transcription factors during endodormancy in pear (Pyrus pyrifolia). In this study, we analyzed the regulation of pear DAM genes by CBFs in further detail. Four CBF and three DAM genes were identified in the pear cultivar ‘Wonhwang’. Under natural conditions, PpDAM1 expression decreased from the start of chilling accumulation, while the other two DAM and three CBF genes peaked during endodormancy release. Under chilling treatment, the expressions of PpDAM1, PpDAM2 and PpCBF1 genes were similar to those under natural conditions. Different biochemical methods revealed that PpCBF2/4 can bind to the promoter of PpDAM1 and activate its expression and that PpCBF1/4 can activate PpDAM3. Interestingly, we found that PpCBF2 can activate PpCBF3/4 transcription by directly binding to their promoters. The ICE-CBF regulon is conserved in some plants; three ICE genes were identified in pear, but their expressions did not obviously change under natural and artificial chilling conditions. On the contrary, the selective transcriptional induction of PpCBFs by PpICE1s was observed in a dual-luciferase assay. Considering all these results, we propose that the PpCBF1-PpDAM2 regulon mainly responds to low temperature during endodormancy regulation, with further post-translational regulation by PpICE3. Our results provide basic information on CBF genes functional redundancy and differentiation and demonstrate that the CBF-DAM signaling pathway is involved in the pear bud endodormancy process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AbA:

Aureobasidin A

CBF:

C-repeat binding factor

COR:

Cold-regulated

CRT/DRE:

C-repeat/dehydration responsive element

CU:

Chilling unit

DAM:

Dormancy associated MADS-box gene

LUC/REN:

Firefly luciferase/Renilla luciferase

qRT- PCR:

Quantitative real-time PCR

ICE:

Inducer of CBF expression

Y1H:

Yeast one-hybrid

References

  • Arora R, Rowland LJ, Tanino KK (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. Hortscience 38:911–921

    Article  Google Scholar 

  • Benedict C, Jeffrey SS, Meng RG, Chang YG, Bhalerao R, Huner N, Chad EF, Tony C, Hurry V (2006) The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29:1259–1272

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Li ZG, Zhebentyayeva T, Fan SH, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Article  Google Scholar 

  • Campoy JA, Ruiz D, Egea J (2011) Dormancy in temperate fruit trees in a global warming context: A review. Sci Hortic 130:357–372. 

    Article  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu JH, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Ding YL, Li H, Zhang XY, Xie Q, Gong ZZ, Yang SH (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289

    Article  CAS  PubMed  Google Scholar 

  • Faust M, Erez A, Rowland LJ, Wang SY, Norman HA (1997) Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance, and release. Hortscience 32:623–629

    Article  Google Scholar 

  • Feng XM, Zhao Q, Zhao LL, Qiao Y, Xie XB, Li HF, Yao YX, You CX, Hao YJ (2012) The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biol 12:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fursova OV, Pogorelko GV, Tarasov VA (2009) Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429:98–103

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  CAS  PubMed  Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    Article  CAS  PubMed  Google Scholar 

  • Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing W (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XS, Li KQ, Jin C, Zhang SL (2015) ICE1 of Pyrus ussuriensis functions in cold tolerance by enhancing PuDREBa transcriptional levels through interacting with PuHHP1. Sci Rep 5: 17620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia YX, Ding YL, Shi YT, Zhang XY, Gong ZZ, Yang SH (2016) The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol 212:345–353

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Lee M, Lee JH, Lee HJ, Park CM (2015) The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Mol Biol 89:187–201

    Article  CAS  PubMed  Google Scholar 

  • Leida C, Conesa A, Llácer G, Badenes ML, Ríos G (2012) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193:67–80

    Article  CAS  PubMed  Google Scholar 

  • Li JZ, Xu Y, Niu QF, He LF, Teng YW, Bai SL (2018) Abscisic Acid (ABA) promotes the induction and maintenance of Pear (Pyrus pyrifolia white pear group) flower bud endodormancy. Int J Mol Sci 19:310

    Article  CAS  PubMed Central  Google Scholar 

  • Liu GQ, Li WS, Zheng PH, Xu T, Chen LJ, Liu DF, Hussain S, Teng YW (2012) Transcriptomic analysis of ‘Suli’ pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq. BMC Genom 13:700

    Article  CAS  Google Scholar 

  • Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DERB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu QF, Li JZ, Cai DY, Qian MJ, Jia HM, Bai SL, Sayed H, Liu GQ, Teng YW, Zheng XY (2016) Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud. J Exp Bot 67:239–257

    Article  CAS  PubMed  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104:21002–21007

    Article  PubMed  PubMed Central  Google Scholar 

  • Palonen P (2006) Vegetative growth, cold acclimation, and dormancy as affected by temperature and photoperiod in six red raspberry (Rubus idaeus L.) cultivars. Eur J Hort Sci 71:1–6

    Google Scholar 

  • Peng PH, Lin CH, Tsai HW, Lin TY (2014) Cold Response in Phalaenopsis aphrodite and Characterization of PaCBF1 and PaICE1. Plant Cell Physiol 55:1623–1635

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Bai SL, Ito A, Sakamoto D, Saito T, Ubi BE, Imai T, Moriguchi T (2013) Expression and genomic structure of the dormancy-associated MADS box genes MADS13 in Japanese pears (Pyrus pyrifolia Nakai) that differ in their chilling requirement for endodormancy release. Tree Physiol 33:654–667

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Bai SL, Imai T, Ito A, Nakajima I, Moriguchi T (2015) Histone modification and signalling cascade of the dormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (Pyrus pyrifolia) during endodormancy. Plant Cell Environ 38:1157–1166

    Article  CAS  PubMed  Google Scholar 

  • Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R (2011) Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot. Plant Physiol 157:485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan W, Kuang JF, Lu WJ, Chen JY (2014) Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1. Plant Cell Environ 37:2116–2127

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubi BE, Sakamoto D, Ban Y, Shimada T, Ito A, Nakajima I, Takemura Y, Tamura F, Saito T, Moriguchi T (2010) Molecular cloning of dormancy-associated MADS-box Gene homologs and their characterization during seasonal endodormancy transitional phases of Japanese pear. J Am Soc Hortic Sci 135(2):174–182

    Article  Google Scholar 

  • Wang Y, Jiang CJ, Li YY, Wei CL, Deng WW (2012) CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep 31:27–34

    Article  CAS  PubMed  Google Scholar 

  • Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in Birch. Plant Physiol 147:1199–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D (2011) Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta 233:971–983

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Nassuth A, Teulières C, Marque C, Rowland J, Cao P, Brown A (2014) Genomics of cold hardiness in woody plants. Crit Rev Plant Sci 33:92–124

    Article  CAS  Google Scholar 

  • Wisniewski M, Norelli J, Artlip T (2015) Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants. Front Plant Sci 6:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Yooyongwech S, Sugaya S, Sekozawa Y, Gemma H (2009) Differential adaptation of high- and low-chill dormant peaches in winter through aquaporin gene expression and soluble sugar content. Plant Cell Rep 28:1709–1715

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Yu B, Bai JH, Qian MJ, Shu Q, Su J, Teng YW (2012) Effects of high temperatures on UV-B/visible irradiation induced postharvest anthocyanin accumulation in ‘Yunhongli No. 1’ (Pyrus pyrifolia Nakai) pears. Sci Hortic 134:53–59

    Article  CAS  Google Scholar 

  • Zhao K, Zhou YZ, Ahmad S, Yong X, Xie XH, Han Y, Li YS, Sun LD, Zhang QX (2018a) PmCBFs synthetically affect PmDAM6 by alternative promoter binding and protein complexes towards the dormancy of bud for Prunus mume. Sci Rep 8:4527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Zhou YZ, Li YS, Zhuo XK, Ahmad S, Han Y, Yong X, Zhang QX (2018b) Crosstalk of PmCBFs and PmDAMs Based on the Changes of Phytohormones under Seasonal Cold Stress in the Stem of Prunus mume. Int J Mol Sci 19:15

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (No. 31501736); Earmarked Fund for China Agriculture Research System (CARS-28) and the Fundamental Research Funds for the Central Universities (2018QNA6022).

Author information

Authors and Affiliations

Authors

Contributions

SB and YT conceived and supervised the project; JL, and SB designed the experiments; JL and XY performed most of the experiments; QY, YM and BY carried out some of the experiments; JT collected pear bud samples; JL, YT and SB analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yuanwen Teng or Songling Bai.

Ethics declarations

Conflict of interest

The authors declare there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1601 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yan, X., Yang, Q. et al. PpCBFs selectively regulate PpDAMs and contribute to the pear bud endodormancy process. Plant Mol Biol 99, 575–586 (2019). https://doi.org/10.1007/s11103-019-00837-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00837-7

Keywords

Navigation