Skip to main content

Advertisement

Log in

Atmospheric Pressure Nonthermal Plasma Synthesis of Magnesium Nitride as a Safe Ammonia Carrier

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The synthesis of Mg3N2, a new safe ammonia carrier, by the nitridation of MgO using a simple plasma process is proposed and demonstrated. Recently, ammonia has been considered a promising energy storage material because of its high hydrogen storage density. However, the toxicity of ammonia is an essential safety concern in the storage and transport sector. Hence, a safety ammonia carrier is required for the dissemination of ammonia as an energy carrier. Therefore, in this study, we focus on Mg3N2 synthesis by the nitridation of MgO using an atmospheric pressure nonthermal plasma in a mixed gas atmosphere of N2 and H2. At present, 0.3% of MgO nitridation was achieved within 40 min of plasma synthesis. If complete nitridation of MgO becomes possible in the future, a breakthrough will occur in the field of energy storage materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358

    Article  CAS  Google Scholar 

  2. Sakintuna B, Darkrim FL, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 32:1121–1140

    Article  CAS  Google Scholar 

  3. Lu J, Fang ZZ, Choi YJ, Sohn HY (2007) Potential of binary lithium magnesium nitride for hydrogen storage applications. J Phys Chem C 111:12129–12134

    Article  CAS  Google Scholar 

  4. Wang W, Herreros JM, Tsolakis A, York APE (2013) Ammonia as hydrogen carrier for transportation; investigation of the ammonia exhaust gas fuel reforming. Int J Hydrog Energy 38:9907–9917

    Article  CAS  Google Scholar 

  5. Patil BS, Wang Q, Hessel V, Lang J (2015) Plasma N2-fixation: 1900-2014. Catal Today 256:49–66

    Article  CAS  Google Scholar 

  6. Kim HH, Teramoto Y, Ogata A, Takagi H, Nanba T (2017) Atmospheric-pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts. Plasma Process Polym 14:1–9

    Google Scholar 

  7. Yin KS, Venugopalan M (1983) Plasma chemical synthesis. I. Effect of electrode material on the synthesis of ammonia. Plasma Chem Plasma Process 3(3):343–350

    Article  CAS  Google Scholar 

  8. Uyama H, Matsumoto O (1989) Synthesis of ammonia in high-frequency discharges. Plasma Chem Plasma Process 9(1):13–24

    Article  CAS  Google Scholar 

  9. Uyama H, Matsumoto O (1989) Synthesis of ammonia in high-frequency discharges. II. Synthesis of ammonia in a microwave discharge under various conditions. Plasma Chem Plasma Process 9(3):421–432

    Article  CAS  Google Scholar 

  10. Pool JA, Lobkovsky E, Chirik PJ (2004) Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 427:527–530

    Article  CAS  PubMed  Google Scholar 

  11. Inoue Y, Kitano M, Kishida K, Abe H, Niwa Y, Sasase M, Fujita Y, Ishikawa H, Yokoyama T, Hara M, Hosono H (2016) Efficient and stable ammonia synthesis by self-organized flat Ru nanoparticles on calcium amide. ACS Catal 6:7577–7584

    Article  CAS  Google Scholar 

  12. Sugiyama K, Akazawa K, Oshima M, Miura H, Matsuda T, Nomura O (1986) Ammonia synthesis by means of plasma over MgO catalyst. Plasma Chem Plasma Process 6(2):179–193

    Article  CAS  Google Scholar 

  13. Mizushima T, Matsumoto K, Ohkita H, Kakuta N (2007) Catalytic effects of metal-loaded membranelike alumina tubes on ammonia synthesis in atmospheric pressure plasma by dielectric barrier discharge. Plasma Chem Plasma Process 27:1–11

    Article  CAS  Google Scholar 

  14. Klerke A, Christensen CH, Nørskov JK, Vegge T (2008) Ammonia for hydrogen storage: challenges and opportunities. J Mater Chem 18:2304–2310

    Article  CAS  Google Scholar 

  15. Christensen CH, Sørensen RZ, Johannessen T, Quaade U, Honkala K, Elmøe TD, Køhler R, Nørskov JK (2005) Metal ammine complexes for hydrogen storage. J Mater Chem 15:4106–4108

    Article  CAS  Google Scholar 

  16. Sørensen RZ, Hummelshøj JS, Klerke A, Reeves JB, Vegge T, Nørskov JK, Christensen CH (2008) Indirect, reversible high-density hydrogen storage in compact metal ammine salts. J Am Chem Soc 130:8660–8668

    Article  CAS  PubMed  Google Scholar 

  17. Christensen CH, Johannessen T, Sørensen RZ, Nørskov JK (2005) Towards an ammonia-mediated hydrogen economy? Catal Today 111:140–144

    Article  CAS  Google Scholar 

  18. Veitch GE, Bridgwood KL, Ley SV (2008) Magnesium nitride as a convenient source of ammonia: preparation of primary amides. Organ Lett 10:3623–3625

    Article  CAS  Google Scholar 

  19. Vissokov G, Grancharov L, Tsvetanov T (2003) On the plasma-chemical synthesis of nanopowders. Plasma Sci Technol 5(6):2039–2050

    Article  CAS  Google Scholar 

  20. Kim D, Kim T, Park H, Park D (2011) Synthesis of nanocrystalline magnesium nitride (Mg3N2) powder using thermal plasma. Appl Surf Sci 257:5375–5379

    Article  CAS  Google Scholar 

  21. Zen S, Abe T, Teramoto Y (2018) Indirect synthesis system for ammonia from nitrogen and water using nonthermal plasma under ambient conditions. Plasma Chem Plasma Process 38:347–354

    Article  CAS  Google Scholar 

  22. Heyns AM, Prinsloo LC, Range KJ, Stassen M (1998) The vibrational spectra and decomposition of α-calcium nitride (α-Ca3N2) and magnesium nitride (Mg3N2). J Solid State Chem 137:33–41

    Article  CAS  Google Scholar 

  23. Bai M, Zhang Z, Bai X, Bai M, Ning W (2003) Plasma synthesis of ammonia with a microgap dielectric barrier discharge at ambient pressure. IEEE Trans Plasma Sci 31(6):1285–1291

    Article  CAS  Google Scholar 

  24. Hanlon JM, Diaz LB, Balducci G, Stobbs BA, Bielewski M, Chung P, Maclaren L, Gregory DH (2015) Rapid surfactant-free synthesis of Mg (OH)2 nanoplates and pseudomorphic dehydration to MgO. Cryst Eng Comm 17:5672–5679

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Yashima Environment Technology Foundation and JSPS KAKENHI Grant Number 19K14958.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shungo Zen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zen, S., Abe, T. & Teramoto, Y. Atmospheric Pressure Nonthermal Plasma Synthesis of Magnesium Nitride as a Safe Ammonia Carrier. Plasma Chem Plasma Process 39, 1203–1210 (2019). https://doi.org/10.1007/s11090-019-10002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10002-z

Keywords

Navigation