Skip to main content
Log in

Nitrogen-Doped Titanium Dioxide Thin Films Formation on the Surface of PLLA Electrospun Microfibers Scaffold by Reactive Magnetron Sputtering Method

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Nitrogen-doped thin titanium dioxide films formed by the reactive magnetron sputtering method on the surface of PLLA electrospun microfibers scaffold were investigated. It was shown that the chemical composition of the films is shifting from titanium dioxide (TiO2) composites saturated with C–NH, C=N, N–C=N and HN–C=O compounds to solid solutions of titanium oxides (TixOy) and titanium oxynitrides (TiOxNy) with the increased time of the treatment. An empirical model describing changes in the chemical composition of the surface due to the treatment was proposed. It was shown that the modification of the PLLA microfibers scaffolds surface improves cell-scaffold and cell–cell interactions with the highest number of viable adherent cells observed on the scaffold treated for 4 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hamad K, Kaseem M, Yang HW et al (2015) Properties and medical applications of polylactic acid: a review. Express Polym Lett 9:435–455. https://doi.org/10.3144/expresspolymlett.2015.42

    Article  CAS  Google Scholar 

  2. Tian H, Tang Z, Zhuang X et al (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280. https://doi.org/10.1016/j.progpolymsci.2011.06.004

    Article  CAS  Google Scholar 

  3. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106. https://doi.org/10.1088/0957-4484/17/14/R01

    Article  CAS  PubMed  Google Scholar 

  4. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  Google Scholar 

  5. Santoro M, Shah SR, Walker JL, Mikos AG (2016) Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev 107:206–212. https://doi.org/10.1016/j.addr.2016.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang T, Carbone EJ, Lo KW-H, Laurencin CT (2014) Electrospinning of Polymer Nanofibers for Tissue Regeneration. Prog Polym Sci 46:1–24. https://doi.org/10.1016/j.progpolymsci.2014.12.001

    Article  CAS  Google Scholar 

  7. von der Mark K, Park J (2013) Engineering biocompatible implant surfaces. Prog Mater Sci 58:327–381. https://doi.org/10.1016/j.pmatsci.2012.09.002

    Article  CAS  Google Scholar 

  8. Bacakova L, Filova E, Parizek M et al (2011) Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv 29:739–767. https://doi.org/10.1016/j.biotechadv.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  9. Demina TS, Gilman AB, Zelenetskii AN (2017) Application of high-energy chemistry methods to the modification of the structure and properties of polylactide (a review). High Energy Chem 51:302–314. https://doi.org/10.1134/S0018143917040038

    Article  CAS  Google Scholar 

  10. Moussa M, Fontana P, Hamdan F et al (2016) Modulation of osteoblast behavior on TiN x O y coatings by altering the N/O stoichiometry while maintaining a high thrombogenic potential. J Biomater Appl 30:1219–1229. https://doi.org/10.1177/0885328215619084

    Article  CAS  PubMed  Google Scholar 

  11. Durual S, Pernet F, Rieder P et al (2011) Titanium nitride oxide coating on rough titanium stimulates the proliferation of human primary osteoblasts. Clin Oral Implants Res 22:552–559. https://doi.org/10.1111/j.1600-0501.2010.02033.x

    Article  CAS  PubMed  Google Scholar 

  12. Moussa M, Banakh O, Wehrle-Haller B et al (2017) TiN x O y coatings facilitate the initial adhesion of osteoblasts to create a suitable environment for their proliferation and the recruitment of endothelial cells. Biomed Mater 12:025001. https://doi.org/10.1088/1748-605X/aa57a7

    Article  CAS  PubMed  Google Scholar 

  13. Karjalainen PP, Ylitalo A, Airaksinen JK, Nammas W (2010) Titanium-nitride-oxide-coated Titan-2 bioactive coronary stent: a new horizon for coronary intervention. Expert Rev Med Devices 7:599–604. https://doi.org/10.1586/erd.10.44

    Article  CAS  PubMed  Google Scholar 

  14. Cyster LA, Parker KG, Parker TL, Grant DM (2003) The effect of surface chemistry and nanotopography of titanium nitride (TiN) films on 3T3-L1 fibroblasts. J Biomed Mater Res 67A:138–147. https://doi.org/10.1002/jbm.a.10087

    Article  CAS  Google Scholar 

  15. Windecker S, Mayer I, De Pasquale G et al (2001) Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia. Circulation 104:928–933

    Article  CAS  PubMed  Google Scholar 

  16. Mosseri M, Miller H, Tamari I et al (2006) The Titanium-NO Stent:results of a multicenter registry. EuroIntervention 2:192–196

    PubMed  Google Scholar 

  17. Sukhorukova IV, Sheveyko AN, Firestein KL et al (2017) Mechanical properties of decellularized extracellular matrix coated with TiCaPCON film. Biomed Mater 12:035014. https://doi.org/10.1088/1748-605X/aa6fc0

    Article  CAS  PubMed  Google Scholar 

  18. Bolbasov EN, Antonova LV, Stankevich KS et al (2017) The use of magnetron sputtering for the deposition of thin titanium coatings on the surface of bioresorbable electrospun fibrous scaffolds for vascular tissue engineering: a pilot study. Appl Surf Sci 398:63–72. https://doi.org/10.1016/j.apsusc.2016.12.033

    Article  CAS  Google Scholar 

  19. Slepička P, Malá Z, Rimpelová S, Švorčík V (2016) Antibacterial properties of modified biodegradable PHB non-woven fabric. Mater Sci Eng C 65:364–368. https://doi.org/10.1016/j.msec.2016.04.052

    Article  CAS  Google Scholar 

  20. Arnell R, Kelly P (1999) Recent advances in magnetron sputtering. Surf Coat Technol 112:170–176. https://doi.org/10.1016/S0257-8972(98)00749-X

    Article  CAS  Google Scholar 

  21. Bolbasov EN, Maryin PV, Stankevich KS et al (2018) Surface modification of electrospun poly-(l -lactic) acid scaffolds by reactive magnetron sputtering. Colloids Surfaces B Biointerfaces 162:43–51. https://doi.org/10.1016/j.colsurfb.2017.11.028

    Article  CAS  PubMed  Google Scholar 

  22. Bochevarov AD, Harder E, Hughes TF et al (2013) Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113:2110–2142. https://doi.org/10.1002/qua.24481

    Article  CAS  Google Scholar 

  23. Baudin B, Bruneel A, Bosselut N, Vaubourdolle M (2007) A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc 2:481–485. https://doi.org/10.1038/nprot.2007.54

    Article  CAS  PubMed  Google Scholar 

  24. Dolci LS, Quiroga SD, Gherardi M et al (2014) Carboxyl surface functionalization of poly(l-lactic acid) Electrospun Nanofibers through Atmospheric Non-Thermal Plasma Affects Fibroblast Morphology. Plasma Process Polym 11:203–213. https://doi.org/10.1002/ppap.201300104

    Article  CAS  Google Scholar 

  25. Neuhäuser M, Bärwulf S, Hilgers H et al (1999) Optical emission spectroscopy studies of titanium nitride sputtering on thermoplastic polymers. Surf Coatings Technol 116–119:981–985. https://doi.org/10.1016/S0257-8972(99)00214-5

    Article  Google Scholar 

  26. Boumerzoug M, Pang Z, Boudreau M et al (1995) Room temperature electron cyclotron resonance chemical vapor deposition of high quality TiN. Appl Phys Lett 66:302–304. https://doi.org/10.1063/1.113525

    Article  CAS  Google Scholar 

  27. Vandevelde T, Nesladek M, Quaeyhaegens C, Stals L (1996) Optical emission spectroscopy of the plasma during CVD diamond growth with nitrogen addition. Thin Solid Films 290–291:143–147. https://doi.org/10.1016/S0040-6090(96)09189-4

    Article  Google Scholar 

  28. Dunn TM, Hanson LK, Rubinson KA (1970) Rotational analysis of the red electronic emission system of titanium nitride. Can J Phys 48:1657–1663. https://doi.org/10.1139/p70-209

    Article  CAS  Google Scholar 

  29. Mahieu S, Depla D (2009) Reactive sputter deposition of TiN layers: modelling the growth by characterization of particle fluxes towards the substrate. J Phys D Appl Phys 42:053002. https://doi.org/10.1088/0022-3727/42/5/053002

    Article  CAS  Google Scholar 

  30. Pham QP, Sharma U, Mikos AG (2006) Electrospun poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromol 7:2796–2805. https://doi.org/10.1021/bm060680j

    Article  CAS  Google Scholar 

  31. Shim IK, Jung MR, Kim KH et al (2010) Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanical expansion: fabrication and bone regeneration. J Biomed Mater Res Part B Appl Biomater 95B:150–160. https://doi.org/10.1002/jbm.b.31695

    Article  CAS  Google Scholar 

  32. Fioretta ES, Simonet M, Smits AIPM et al (2014) Differential response of endothelial and endothelial colony forming cells on electrospun scaffolds with distinct microfiber diameters. Biomacromol 15:821–829. https://doi.org/10.1021/bm4016418

    Article  CAS  Google Scholar 

  33. Zhu X, Cui W, Li X, Jin Y (2008) Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromol 9:1795–1801. https://doi.org/10.1021/bm800476u

    Article  CAS  Google Scholar 

  34. Wang Z, Cui Y, Wang J et al (2014) The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials 35:5700–5710. https://doi.org/10.1016/j.biomaterials.2014.03.078

    Article  CAS  PubMed  Google Scholar 

  35. Kot M, Łobaza J, Naumann F et al (2018) Long-term ambient surface oxidation of titanium oxynitride films prepared by plasma-enhanced atomic layer deposition: an XPS study. J Vac Sci Technol Vacu Surfaces Film 36:01A114. https://doi.org/10.1116/1.5003356

    Article  CAS  Google Scholar 

  36. Grosso S, Latu-Romain L, Berthomé G et al (2017) Titanium and titanium nitride thin films grown by dc reactive magnetron sputtering Physical Vapor Deposition in a continuous mode on stainless steel wires: chemical, morphological and structural investigations. Surf Coat Technol 324:318–327. https://doi.org/10.1016/j.surfcoat.2017.05.089

    Article  CAS  Google Scholar 

  37. Ferreira BMP, Pinheiro LMP, Nascente PAP et al (2009) Plasma surface treatments of poly(l-lactic acid) (PLLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV). Mater Sci Eng C 29:806–813. https://doi.org/10.1016/j.msec.2008.07.026

    Article  CAS  Google Scholar 

  38. Renò F, D’Angelo D, Gottardi G et al (2012) Atmospheric pressure plasma surface modification of poly(d, l-lactic acid) increases fibroblast, osteoblast and keratinocyte adhesion and proliferation. Plasma Process Polym 9:491–502. https://doi.org/10.1002/ppap.201100139

    Article  CAS  Google Scholar 

  39. Sarapirom S, Yu LD, Boonyawan D, Chaiwong C (2014) Effect of surface modification of poly (lactic acid) by low-pressure ammonia plasma on adsorption of human serum albumin. Appl Surf Sci 310:42–50

    Article  CAS  Google Scholar 

  40. Jeyachandran YL, Narayandass SK, Mangalaraj D et al (2007) Properties of titanium nitride films prepared by direct current magnetron sputtering. Mater Sci Eng A 445–446:223–236. https://doi.org/10.1016/j.msea.2006.09.021

    Article  CAS  Google Scholar 

  41. Demina T, Zaytseva-Zotova D, Yablokov M et al (2012) DC discharge plasma modification of chitosan/gelatin/PLLA films: surface properties, chemical structure and cell affinity. Surf Coat Technol 207:508–516. https://doi.org/10.1016/j.surfcoat.2012.07.059

    Article  CAS  Google Scholar 

  42. Pustovalova AA, Pichugin VF, Ivanova NM, Bruns M (2017) Structural features of N-containing titanium dioxide thin films deposited by magnetron sputtering. Thin Solid Films 627:9–16. https://doi.org/10.1016/j.tsf.2017.02.056

    Article  CAS  Google Scholar 

  43. Kuznetsov MV, Zhuravlev JF, Gubanov VA (1992) XPS analysis of adsorption of oxygen molecules on the surface of Ti and TiNx films in vacuum. J Electron Spectros Relat Phenomena 58:169–176. https://doi.org/10.1016/0368-2048(92)80016-2

    Article  CAS  Google Scholar 

  44. Kersten H, Deutsch H, Steffen H et al (2001) The energy balance at substrate surfaces during plasma processing. Vacuum 63:385–431. https://doi.org/10.1016/S0042-207X(01)00350-5

    Article  CAS  Google Scholar 

  45. Petrov I, Myers A, Greene JE, Abelson JR (1994) Mass and energy resolved detection of ions and neutral sputtered species incident at the substrate during reactive magnetron sputtering of Ti in mixed Ar + N 2 mixtures. J Vac Sci Technol Vac Surfaces Film 12:2846–2854. https://doi.org/10.1116/1.578955

    Article  CAS  Google Scholar 

  46. Morent R, De Geyter N, Trentesaux M et al (2010) Influence of discharge atmosphere on the ageing behaviour of plasma-treated polylactic acid. Plasma Chem Plasma Process 30:525–536. https://doi.org/10.1007/s11090-010-9233-8

    Article  CAS  Google Scholar 

  47. Inagaki N, Narushima K, Tsutsui Y, Ohyama Y (2002) Surface modification and degradation of poly(lactic acid) films by Ar-plasma. J Adhes Sci Technol 16:1041–1054. https://doi.org/10.1163/156856102760146156

    Article  CAS  Google Scholar 

  48. Homma Y, Chiashi S, Yamamoto T et al (2013) Photoluminescence measurements and molecular dynamics simulations of water adsorption on the hydrophobic surface of a carbon nanotube in water vapor. Phys Rev Lett 110:157402. https://doi.org/10.1103/PhysRevLett.110.157402

    Article  CAS  PubMed  Google Scholar 

  49. Cao P, Xu K, Varghese JO, Heath JR (2011) The microscopic structure of adsorbed water on hydrophobic surfaces under ambient conditions. Nano Lett 11:5581–5586. https://doi.org/10.1021/nl2036639

    Article  CAS  PubMed  Google Scholar 

  50. Chen VJ, Smith LA, Ma PX (2006) Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials 27:3973–3979. https://doi.org/10.1016/j.biomaterials.2006.02.043

    Article  CAS  PubMed  Google Scholar 

  51. Gibson PW, Schreuder-Gibson HL, Rivin D (1999) Electrospun fiber mats: transport properties. AIChE J 45:190–195. https://doi.org/10.1002/aic.690450116

    Article  CAS  Google Scholar 

  52. Fletcher AJ, Yüzak Y, Thomas KM (2006) Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon. Carbon N Y 44:989–1004. https://doi.org/10.1016/j.carbon.2005.10.020

    Article  CAS  Google Scholar 

  53. Slepička P, Malá Z, Rimpelová S et al (2015) Plasma treatment of the surface of poly(hydroxybutyrate) foil and non-woven fabric and assessment of the biological properties. React Funct Polym 95:71–79. https://doi.org/10.1016/j.reactfunctpolym.2015.08.010

    Article  CAS  Google Scholar 

  54. Riester M, Bärwulf S, Lugscheider E, Hilgers H (1999) Morphology of sputtered titanium nitride thin films on thermoplastic polymers. Surf Coat Technol 116–119:1001–1005

    Article  Google Scholar 

  55. Balducci G, Gigli G, Guido M (1985) Identification and stability determinations for the gaseous titanium oxide molecules Ti2O3 and Ti2O4. J Chem Phys 83:1913–1916. https://doi.org/10.1063/1.449378

    Article  CAS  Google Scholar 

  56. Shehzad N, Tahir M, Johari K et al (2018) A critical review on TiO2 based photocatalytic CO2 reduction system: strategies to improve efficiency. J CO2 Util 26:98–122. https://doi.org/10.1016/j.jcou.2018.04.026

Download references

Acknowledgements

This research was supported by Tomsk Polytechnic University Competitiveness Enhancement Program project VIU-SEC B.P. Veinberg-210/2018. The authors acknowledge the Resource Center of Saint-Petersburg State University “Physical methods of surface investigation” for conducting XPS study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Tverdokhlebov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolbasov, E.N., Maryin, P.V., Stankevich, K.S. et al. Nitrogen-Doped Titanium Dioxide Thin Films Formation on the Surface of PLLA Electrospun Microfibers Scaffold by Reactive Magnetron Sputtering Method. Plasma Chem Plasma Process 39, 503–517 (2019). https://doi.org/10.1007/s11090-019-09956-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-09956-x

Keywords

Navigation