Skip to main content
Log in

Telomere elongation via alternative lengthening of telomeres (ALT) and telomerase activation in primary metastatic medulloblastoma of childhood

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Elongation of telomeres is necessary for tumor cell immortalization and senescence escape; neoplastic cells use to alternative pathways to elongate telomeres: telomerase reactivation or a telomerase-independent mechanism termed alternative lengthening of telomeres (ALT). Telomerase and ALT pathway has been explored in adult and pediatric gliomas and medulloblastomas (MDBs); however, these mechanisms were not previously investigated in MDBs metastatic at the onset. Therefore, we analyzed the activation of telomerase and ALT pathway in a homogenous cohort of 43 pediatric metastatic medulloblastomas, to investigate whether telomere elongation could play a role in the biology of metastatic MDB.

Methods

We evaluated telomeres length via telomere-specific fluorescence in situ hybridization (Telo-FISH); we assessed nuclear expression of ATRX by immunohistochemistry (IHC). H3F3A and TERT promoter mutations were analyzed by pyrosequencing, while UTSS methylation status was analyzed via methylation-specific-PCR (MS-PCR).

Results

H3F3A mutations were absent in all MDBs, 30% of samples showed ATRX nuclear loss, 18.2% of cases were characterized by TERT promoter mutations, while 60.9% harboured TERT promoter hyper-methylation in the UTSS region. Elongation of telomeres was found in 42.8% of cases. Metastatic MDBs control telomere elongation via telomerase activation (10.7%), induced by TERT promoter mutations in association with UTSS hyper-methylation, and ALT mechanism (32.1%), triggered by ATRX inactivation. Among non-metastatic MDBs, only 5.9% (1/17) showed ATRX nuclear loss with activation of ALT.

Conclusions

Our metastatic cases frequently activate ALT pathway, suggesting that it is a common process for senescence escape in primary metastatic medulloblastomas. Furthermore, the activation of mechanisms for telomere elongation is not restricted to certain molecular subgroups in this high-risk group of MDBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oganasian L, Karlseder J (2009) Telomeric armor: the layers of end protection. J Cell Sci 122:4013–4025. https://doi.org/10.1242/jcs.050567

    Article  CAS  Google Scholar 

  2. Rubtsova MP, Vasilkova DP, Malyavko AN, Naraikina YV, Zvereva MI, Dontsova OA (2012) Telomere lengthening and other functions of telomerase. Acta Nat 4(2):44–61

    Article  CAS  Google Scholar 

  3. Remke M, Ramaswamy V, Peackock J, Shih DJH, Koelsche C, Northcott PA, Hill N, Cavalli FMG, Kool M, Wang X, Mack SC, Barszczyk M, Morissi AS, Wu X, Agnihotri S, Luu B et al (2013) TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol 126:917–929. https://doi.org/10.1007/s00401-013-1198-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, Anjum S, Wang J, Manyam G, Zoppoli P, Ling S, Rao AA et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563. https://doi.org/10.1016/j.cell.2015.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cesare AJ, Reddel RR (2010) Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet 11:319–330. https://doi.org/10.1038/nrg2763

    Article  CAS  PubMed  Google Scholar 

  6. Koelsche C, Sahm F, Capper D, Reuss D, Sturm D, Jones DTW, Kool M, Northcott PA, Wiestler B, Bohmer K, Meyer J, Marwin C, Hartmann C, Mittelbronn M, Platten M, Brokinkel B et al (2013) Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol 126:907–914. https://doi.org/10.1007/s00401-013-1195-5. doi

    Article  CAS  PubMed  Google Scholar 

  7. Mangerel J, Price A, Castelo-Branco P, Brzezinski J, Buczkowicz P, Rakopoulos P, Merino D, Baskin B, Wasserman J, Mistry M, Barszczyk M, Picard D, Mack S, Remke M, Starkman H et al (2014) Alternative lengthening of telomeres is enriched in, and impacts survival of TP53 mutant pediatric malignant brain tumors. Acta Neuropathol 128:853–862. https://doi.org/10.1007/s00401-014-1348-1

    Article  CAS  PubMed  Google Scholar 

  8. Bechter OE, Zou Y, Shay JW, Wright WE (2003) Homologous recombination in human telomerase-positive and ALT cells occurs with the same frequency. EMBO Rep 4:1138–1143. https://doi.org/10.1038/sj.embor.7400027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gessi M, Van De Nes J, Griewank K, Barresi V, Buckland ME, Kirfel J, Caltabiano R, Hammes J, Lauriola L, Pietsch T, Waha A (2014) Absence of TERT promoter mutations in primary melanocytic tumors of the central nervous system. Neuropathol Appl Neurobiol 40(6):794–797. https://doi.org/10.1111/nan.12138

    Article  CAS  PubMed  Google Scholar 

  10. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, Kadel S, Moll I, Nagore E, Hemminki K, Schadendorf D, Kumar R (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339:959–961. https://doi.org/10.1126/science.1230062

    Article  CAS  PubMed  Google Scholar 

  11. Kim J-H, Huse JT, Huang Y, Lyden D, Greenfield JP (2013) Molecular diagnostics in paediatric glial tumours. Lancet Oncol 14:19. https://doi.org/10.1016/S1470-2045(12)70577-6. doi

    Article  CAS  Google Scholar 

  12. Dorris K, Sobo M, Onar-Thomas A, Panditharatna E, Stevenson CB, Gardner SL, DeWire MD, Pierson CR, Olshefski R, Rempel SA, Goldman S, Miles L. Fouladi M, Drissi R (2014) Prognostic significance of telomere maintenance mechanisms in pediatric high-grade gliomas. J Neurooncol 117(1):67–76. https://doi.org/10.1007/s11060-014-1374-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang DS, Wang Z, He XJ, Diplas BH, Yang R, Killela PJ, Liang J, Meng Q, Ye ZY, Wang W, Jiang XT, Hu L, He XL, Zhao ZS, Xu WJ, Wang HJ, Ma YY, Xia YJ, Li L, Zhang RX, Jin T et al (2015) Recurrent TERT promoter mutations identified in a large-scale study of multiple tumor types are associated with increased TERT expression and telomerase activation. Eur J Cancer 51(8):969–976. https://doi.org/10.1016/j.ejca.2015.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Castelo-Branco P, Sanaa C, Mack S, Gallagher D, Zhang C, Lipman T, Zhukova N, Walker EJ, Martin D, Merino D, Wasserman JD, Elizabeth C, Alon N, Zhang L, Hovestadt V, Kool M et al (2013) Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. Lancet Oncol 14:534–542. https://doi.org/10.1016/S1470-2045(13)70110-4

    Article  CAS  PubMed  Google Scholar 

  15. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Bergman BP, Pan F, Pelloskj CE, Sulman EP, Bhat KP, Verhaan RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522. https://doi.org/10.1016/j.ccr.2010.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA Jr, Friedman AH, Friedman H, Gallia GL, Giovanella BC, Grollman AP, He TC, He Y, Hruban RH, Jallo GI, Mandahl N, Meeker AK et al (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA 110:6021–6026. https://doi.org/10.1073/pnas.1303607110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nonoguchi N, Ohta T, Oh JE, Kim YH, Kleihues P, Ohgaki H (2013) TERT promoter mutations in primary and secondary glioblastomas. Acta Neuropathol 126:931–937. https://doi.org/10.1007/s00401-013-1163-0

    Article  CAS  PubMed  Google Scholar 

  18. Reifenberger G, Weber RG, Riehmer V, Kaulich K, Willscher E, Wirth H, Gietzelt J, Hentschel B, Westphal M, Simon M, Schackert G, Schramm J, Matschke J, Sabel MC, Gramatzki D et al (2014) Molecular characterization of long-term survivors of glioblastoma using genome- and transcriptome-wide profiling. Int J Cancer 135(8):1822–1831. https://doi.org/10.1002/ijc.28836

    Article  CAS  PubMed  Google Scholar 

  19. Episkopou H, Draskovic I, Van Beneden A, Tilman G, Mattiussi M, Gobin M, Arnoult N, Londono-Vallejo A, Decottignies A (2014) Alternative lengthening of telomeres is characterized by reduced compaction of telomeric chromatin. Nucleic Acids Res 42:4391–4405. https://doi.org/10.1093/nar/gku114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nabetani A, Ishikawa F (2011) Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells. J Biochem 149:5–14. https://doi.org/10.1093/jb/mvq119

    Article  CAS  PubMed  Google Scholar 

  21. Ebrahimi A, Skardelly M, Bonzheim I, Ott I, Mühleisen H, Eckert F, Tabatabai G, Schittenhelm J (2016) ATRX immunostaining predicts IDH and H3F3A status in gliomas. Acta Neuropathol Commun 4:60. https://doi.org/10.1186/s40478-016-0331-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heaphy CM, De Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, Bettegowda C, Rodriguez FJ, Eberhart CG, Hebbar S, Offerhaus GJ, McLendon R, Rasheed BA, He Y, Yan H, Bigner DD et al (2011) Altered telomeres in tumors with ATRX and DAXX mutations. Science 333(6041):425. https://doi.org/10.1126/science.1207313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heaphy CM, Subhawong AP, Hong SM, Goggins MG, Montgomery EA, Gabrielson E, Netto GJ, Epstein JI, Lotan TL, Westra WH, Shih Ie M, Iacobuzio-Donahue CA, Maitra A, Li QK et al (2011) Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol 179:1608–1615. https://doi.org/10.1016/j.ajpath.2011.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lovejoy CA, Li W, Reisenweber S, Thongthip S, Bruno J, de Lange T, De S, Petrini JHJ, Sung PA, Jasin M, Rosenbluh J, Zwang Y, Weir BA, Hatton C, Invanova E et al (2012) Loss of ATRX, genome instability, and an altered DNA damage response are Hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet 8(7):e1002772. https://doi.org/10.1371/journal.pgen.1002772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerrit H, Gielen GH, Gessi M, Hammes J, Kramm CM, Waha A, Pietsch T (2013) H3F3A K27M mutation in pediatric CNS tumors: a marker for diffuse high-grade astrocytomas. Am J Clin Pathol 139:345–349. https://doi.org/10.1309/AJCPABOHBC33FVMO

    Article  CAS  Google Scholar 

  26. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M, Hovestadt V, Albercht S, Kool M, Nantel A, Konermann C et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. https://doi.org/10.1038/nature10833

    Article  CAS  PubMed  Google Scholar 

  27. Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, Garzia L, Torchia J, Nor C, Morrissy AS et al (2017) Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31:737–754.e6. https://doi.org/10.1016/j.ccell.2017.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Taylor MD (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29(11):1408–1414. https://doi.org/10.1200/JCO.2009.27.4324

    Article  PubMed  Google Scholar 

  29. Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, Doz F, Kool M, Dufour C, Vassal G, Milde T, Witt O, · Von Hoff K, Pietsch T, Northcott PA, Gajjar A, Robinson GW et al (2016) Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol 131:821–831. https://doi.org/10.1007/s00401-016-1569-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A, Ellison DW, Lichter P, Gilbertson RJ, Pomeroy SL, Kool M, Pfister SM (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123(4):465–472. https://doi.org/10.1007/s00401-011-0922-z

    Article  CAS  PubMed  Google Scholar 

  31. Van Bueren AO, Kortmann RD, Von Hoff K, Friedrich C, Mynarek M, Muller K, Goschzik T, Mühlen A, Gerber N, Warmuth-Metz M, Soerensen N, Deinlein F, Benesch M, Zwiener I et al (2016) Treatment of children and adolescents with metastatic medulloblastoma and prognostic relevance of clinical and biologic parameters. J Clin Oncol 34(34):4151–4160. https://doi.org/10.1200/JCO.2016.67.2428

    Article  Google Scholar 

  32. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) (2016) WHO classification of tumours of the central nervous system, 4th edn. IARC, Lyon

    Google Scholar 

  33. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Schouten-van Meeteren N, Caron HB, Cloos J, Mrsic A, Ylstra B, Grajkowska W, Hartmann W, Pietsch T, Ellison D, Clifford SC, Versteeg R (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 3(8):e3088. https://doi.org/10.1371/journal.pone.0003088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schwalbe EC et al (2017) Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol 18:958–971. https://doi.org/10.1016/S1470-2045(17)30243-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morrissy AS, Cavalli FMG, Remke M, Ramaswamy V et al (2017) Spatial heterogeneity in medulloblastoma. Nat Genet 49(5):780–788. https://doi.org/10.1038/ng.3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu X, Northcott PA, Dubuc A, Dupuy AJ, Shih DJ, Witt H et al (2012) Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482:529–533. https://doi.org/10.1038/nature10825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lannering B, Rutkowski S, Doz F, Pizer B, Gustafsson G, Navajas A et al (2012) Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: results from the randomized multicenter HITSIOP PNET 4 trial. J Clin Oncol 30:3187–3193. https://doi.org/10.1200/jco.2011.39.8719

    Article  PubMed  Google Scholar 

  38. Shih DJ, Northcott PA, Remke M, Korshunov A, Ramaswamy V, Kool M et al (2014) Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol 32:886–896. https://doi.org/10.1200/jco.2013.50.9539

    Article  PubMed  PubMed Central  Google Scholar 

  39. De Braganca KC, Packer RJ (2013) Treatment options for medulloblastoma and CNS primitive neuroectodermal tumor (PNET). Curr Treat Options Neurol 15:593–606. https://doi.org/10.1007/s11940-013-0255-4

    Article  PubMed  PubMed Central  Google Scholar 

  40. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauber BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007 114(2):97–109. https://doi.org/10.1007/s00401-007-0243-4

    Article  Google Scholar 

  41. Gandola L, Massimino M, Cefalo G, Solero C, Spreafico F, Pecori E, Riva D, Collini P, Pignoli E, Giangaspero F, Luksch R, Berretta S, Poggi G, Biassoni V, Ferrari A, Pollo B, Favre C, Sardi I, Terenziani M, Fossati-Bellani F (2009) Hyperfractionated accelerated radiotherapy in the milan strategy for metastatic medulloblastoma. J Clin Oncol 27(4):566–571. https://doi.org/10.1200/JCO.2008.18.4176

    Article  CAS  PubMed  Google Scholar 

  42. Poon SS, Lansdorp PM (2001) Quantitative fluorescence in situ hybridization (Q-FISH). Curr Protoc Cell Biol Chapter 18:Unit18 14

    Google Scholar 

  43. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, Pfaff E, Tonjes M, Sill M, Bender S, Kool M, Zapatka M, Becker N, Zucknick M, Hielscher T, Liu XY et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437. https://doi.org/10.1016/j.ccr.2012.08.024

    Article  CAS  PubMed  Google Scholar 

  44. Cifuentes-Rojas C, Shippen DE (2012) Telomerase regulation. Mutat Res 730:20–27. https://doi.org/10.1016/j.mrfmmm.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  45. Montanaro L, Calienni M, Ceccarelli C, Santini D, Taffurelli M, Pileri S, Trere D, Derenzini M (2008) Relationship between dyskerin expression and telomerase activity in human breast cancer. Cell Oncol 30:483–490. https://doi.org/10.3233/CLO-2008-0436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nandakumar J, Cech TR (2013) Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 14:69–82. https://doi.org/10.1038/nrm3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodriguez FJ, Brosnan-Cashman JA, Allen SJ et al (2019) Alternative lengthening of telomeres, ATRX loss and H3-K27M mutations in histologically defined pilocytic astrocytoma with anaplasia. Brain Pathol 29(1):126–140. https://doi.org/10.1111/bpa.12646

    Article  CAS  PubMed  Google Scholar 

  48. Lee J, Solomon DA, Tihan T (2017) The role of histone modifications and telomere alterations in the pathogenesis of diffuse gliomas in adults and children. J Neurooncol 132(1):1–11. https://doi.org/10.1007/s11060-016-2349-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Simone Minasi was supported by “Associazione Fabrizio Procaccini Onlus” (Grant No. 121). The study was also supported by “Associazione con Lorenzo per mano” (Grant No. 212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Romana Buttarelli.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minasi, S., Baldi, C., Pietsch, T. et al. Telomere elongation via alternative lengthening of telomeres (ALT) and telomerase activation in primary metastatic medulloblastoma of childhood. J Neurooncol 142, 435–444 (2019). https://doi.org/10.1007/s11060-019-03127-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-019-03127-w

Keywords

Navigation