Skip to main content
Log in

Detection of the alternative lengthening of telomeres pathway in malignant gliomas for improved molecular diagnosis

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Human malignant gliomas exhibit acquisition of either one of two telomere maintenance mechanisms, resulting from either reactivation of telomerase expression or activation of an alternative lengthening of telomeres (ALT) mechanism. In the present study, we analyzed 63 human malignant gliomas for the presence of ALT-specific extrachromosomal circles of telomeric DNA (C-circles) and measured telomerase expression, telomeric DNA content (Telo/Alu method), and telomeric repeat-containing RNAs (TERRA) levels. We also assessed histomolecular markers routinely used in clinical practice. The presence of C-circles significantly correlated with IDH1/2 mutation, MGMT exon 1 methylation, low Ki-67 immunostaining, increased telomeric DNA content, absence of functional ATRX protein and level of HTERT gene expression. In multivariate analysis, we observed a trend to a correlation between elevated TERRA levels and increased survival. Interestingly, the C-circles assay allowed to detect ALT activation in glioblastomas exhibiting wild-type IDH1/2 and ATRX expression. These results suggest that, after the correlations uncovered here have been confirmed on larger numbers of tumors, telomeric markers might be useful in improving diagnosis. They also point out to the utility of using the specific, sensitive and quantitative C-circle and Telo/Alu assays that can work with as few as 30 ng of tumor DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Artandi SE, DePinho RA (2010) Telomeres and telomerase in cancer. Carcinogenesis 31:9–18

    Article  CAS  PubMed  Google Scholar 

  2. Bryan TM, Englezou A, Dalla-Pozza L et al (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3:1271–1274

    Article  CAS  PubMed  Google Scholar 

  3. Pickett HA, Reddel RR (2015) Molecular mechanisms of activity and derepression of alternative lengthening of telomeres. Nat Struct Mol Biol 22:875–880

    Article  CAS  PubMed  Google Scholar 

  4. Durant ST (2012) Telomerase-independent paths to immortality in predictable cancer sub-types. J Cancer 3:67–82

    Article  PubMed  PubMed Central  Google Scholar 

  5. Henson JD, Hannay JA, SmcCarthy SW et al (2005) A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas. Clin Cancer Res 11:217–225

    CAS  PubMed  Google Scholar 

  6. Hakin-Smith V, Jellinek DA, Levy D et al (2003) Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme. The Lancet 361:836–838

    Article  CAS  Google Scholar 

  7. McDonald KL, McDonnell J, Muntoni A et al (2010) Presence of alternative lengthening of telomeres mechanism in patients with glioblastoma identifies a less aggressive tumor type with longer survival. J Neuropathol Exp Neurol 69:729–736

    Article  PubMed  Google Scholar 

  8. Heaphy CM, de Wilde RF, Jiao Y et al (2011) Altered telomeres in tumors with ATRX and DAXX mutations. Science 1333:425

    Article  Google Scholar 

  9. Bérubé NG (2011) ATRX in chromatin assembly and genomearchitecture during development and disease. Biochem Cell Biol 89:435–444

    Article  PubMed  Google Scholar 

  10. Henson JD, Cao Y, Huschtscha LI et al (2009) DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat Biotechnol 27:1181–1186

    Article  CAS  PubMed  Google Scholar 

  11. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fogli A, Chautard E, Vaurs-Barrière C et al (2016) The tumoral A genotype of the MGMT rs34180180 single-nucleotide polymorphism in aggressive gliomas is associated with shorter patients’ survival. Carcinogenesis 37:169–176

    Article  CAS  PubMed  Google Scholar 

  13. Karayan-Tapon L, Quillien V, Guilhot J et al (2010) Prognostic value of O6-methylguanine-DNA methyltransferase status in glioblastoma patients, assessed by five different methods. J Neurooncol 97:311–322

    Article  CAS  PubMed  Google Scholar 

  14. Quillien V, Lavenu A, Karayan-Tapon L et al (2012) Comparative assessment of 5 methods (methylation-specific polymerase chain reaction, MethyLight, pyrosequencing, methylation-sensitive high-resolution melting, and immunohistochemistry) to analyze O6-methylguanine-DNA-methyltranferase in a series of 100 glioblastoma patients. Cancer 118:4201–4211

    Article  CAS  PubMed  Google Scholar 

  15. Ducray F, Crinière E, Idbaih A et al (2009) Alpha-internexin expression identifies 1p19q codeleted gliomas. Neurology 72:156–161

    Article  CAS  PubMed  Google Scholar 

  16. Ducray F, Mokhtari K, Crinière E et al (2011) Diagnostic and prognostic value of alpha internexin expression in a series of 409 gliomas. Eur J Cancer 47:802–808

    Article  CAS  PubMed  Google Scholar 

  17. Yeager T, Neumann A, Englezou A et al (1999) Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59:4175–4179

    CAS  PubMed  Google Scholar 

  18. Kreth S, Heyn J, Grau S et al (2010) Identification of valid endogenous control genes for determining gene expression in human glioma. Neuro-Oncol 12:570–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  20. Sampl S, Pramhas S, Stern C et al (2012) Expression of telomeres in astrocytoma WHO grade 2 t0 4: TERRA level correlates with telomere length, telomerase activity, and advanced clinical grade. Transl Oncol 5:5665

    Article  PubMed  PubMed Central  Google Scholar 

  21. Broccoli D, Godley LA, Donehower LA et al (1996) Telomerase activation in mouse mammary tumours: lack of telomere shortening and evidence for regulation of telomerase with RNA cell proliferation. Mol Cell Biol 16:3765–3772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aubert G, Hills M, Lansdorp PM (2012) Telomere length measurement—caveats and a critical assessment of the available technologies and tools. Mut Res 730:59–67

    Article  CAS  Google Scholar 

  23. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  24. Killela PJ, Reitman ZJ, Jiao Y et al (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA 110:6021–6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Azzalin CM, Reichenbach P, Khoriauli L et al (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801

    Article  CAS  PubMed  Google Scholar 

  26. Azzalin CM, Lingner J (2014) Telomere functions grounding on TERRA firma. Trends Cell Biol 25:29–36

    Article  PubMed  Google Scholar 

  27. Heaphy CM, de Wilde RF, Jiao Y et al (2011) Altered telomeres in tumors with ATRX and DAXX mutations. Science 333:425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bower K, Napier CE, Cole SL et al (2012) Loss of wild-type ATRX expression in somatic cell hybrids segregates with activation of alternative lengthening of telomeres. PLoS ONE 7:e50062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Royds JA, Al Nadaf S, Wiles AK et al (2011) The CDKN2A G500 allele is more frequent in GBM patients with no defined telomere maintenance mechanism tumors and is associated with poorer survival. PLoS ONE 6:e26737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiao Y, Killela PJ, Reitman ZJ et al (2012) Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 3:709–722

    Article  PubMed  PubMed Central  Google Scholar 

  31. Heaphy CM, Subhawong AP, Hong SM et al (2011) Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol 179:1608–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan W, Zhang W, You G et al (2012) Correlation of IDH1 mutation with clinicopathologic factors and prognosis in primary glioblastoma: a report of 118 patients from China. PLoS ONE 7:e30339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leu S, von Felten S, Frank S et al (2013) IDH/MGMT-driven molecular classification of low-grade glioma is a strong predictor for long-term survival. Neuro-Oncol 15:469–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferrandon S, Saultier P, Carras J et al (2013) Telomere profiling: toward glioblastoma personalized medicine. Mol Neurobiol 47:64–76

    Article  CAS  PubMed  Google Scholar 

  35. Flynn RL, Cox KE, Jeitany M et al (2015) Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347:273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mélanie Müller-Barthélémy and Annette Quinsat for technical assistance, Valérie Gouilleux for the gift of cell lines, as well as the “Département Génomique PPF ASB” facility at University François-Rabelais of Tours for access to the Storm phosphorimager. This work was supported by grants from the “Fondation de France” and from the “Ligue Grand-Ouest contre le Cancer, comités Eure-et-Loir, Ille-et-Vilaine, Indre-et-Loire, Morbihan, Vendée, Vienne” (MC lab) as well as from The French National Research Agency (ANR: project BIVANDEV), the “Ligue contre le Cancer, comités du Puy-de-Dôme et Ardèche”, the “Fondation ARC”, and the “Conseil régional d’Auvergne” (PA lab), and the Plan Cancer-INSERM (CS14085CS “Gliobiv”) (PV and PA labs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Charbonneau.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Michel Charbonneau and Pierre Verrelle are co-senior authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 52 KB)

Supplementary material 2 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fogli, A., Demattei, MV., Corset, L. et al. Detection of the alternative lengthening of telomeres pathway in malignant gliomas for improved molecular diagnosis. J Neurooncol 135, 381–390 (2017). https://doi.org/10.1007/s11060-017-2585-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2585-7

Keywords

Navigation