Advertisement

Journal of Neuro-Oncology

, Volume 137, Issue 2, pp 303–311 | Cite as

Clinical and molecular characteristics of gliosarcoma and modern prognostic significance relative to conventional glioblastoma

  • Deborah R. Smith
  • Cheng-Chia Wu
  • Heva J. Saadatmand
  • Steven R. Isaacson
  • Simon K. Cheng
  • Michael B. Sisti
  • Jeffrey N. Bruce
  • Sameer A. Sheth
  • Andrew B. Lassman
  • Fabio M. Iwamoto
  • Shih-Hsiu Wang
  • Peter Canoll
  • Guy M. McKhann2nd
  • Tony J. C. Wang
Clinical Study

Abstract

Gliosarcoma is a rare histopathologic variant of glioblastoma traditionally associated with a poor prognosis. While gliosarcoma may represent a distinct clinical entity given its unique histologic composition and molecular features, its relative prognostic significance remains uncertain. While treatment of gliosarcoma generally encompasses the same standardized approach used in glioblastoma, supporting evidence is limited given its rarity. Here, we characterized 32 cases of gliosarcoma and retrospectively evaluated survival relative to 451 glioblastoma patients diagnosed during the same era within the same institution. Overall, we identified 22 primary gliosarcomas, representing 4.7% of WHO Grade IV primary glioblastomas, and 10 secondary gliosarcomas. With median age of 62, patients were predominately Caucasian (87.5%) and male (65.6%). Tumors with available molecular profiling were primarily MGMT-unmethylated (87.5%), IDH-1-preserved (100%) and EGFR wild-type (100%). Interestingly, while no significant median survival difference between primary gliosarcoma and glioblastoma was observed across the entire cohort (11.0 vs. 14.8 months, p = 0.269), median survival was worse for gliosarcoma specifically among patients who received modern temozolomide-based (TMZ) chemoradiotherapy (11.0 vs. 17.3 months, p = 0.006). Matched-pair analysis also trended toward worse median survival among gliosarcomas (11.0 vs. 19.6 months, log-rank p = 0.177, Breslow p = 0.010). While adjuvant radiotherapy (HR 0.206, p = 0.035) and TMZ-based chemotherapy (HR 0.531, p = 0.000) appeared protective, gliosarcoma emerged as a significantly poor prognostic factor on multivariate analysis (HR 3.27, p = 0.012). Collectively, our results suggest that gliosarcoma may still portend worse prognosis even with modern trimodality therapy.

Keywords

Gliosarcoma Glioblastoma Neuro-oncology Radiotherapy Temozolomide 

Notes

Acknowledgements

Dr. Wang reports personal fees and non-financial support from AbbVie, non-financial support from Merck, personal fees from AstraZeneca, personal fees from Doximity, non-financial support from Novocure, personal fees and non-financial support from Elekta and personal fees from Wolthers Kluwer, outside the submitted work.

Supplementary material

11060_2017_2718_MOESM1_ESM.pdf (88 kb)
Supplementary material 1 (PDF 88 KB)

References

  1. 1.
    Ostrom QT, Bauchet L, Davis FG et al (2014) The epidemiology of glioma in adults: a state of the science review. Neuro Oncol 16(7):896–913.  https://doi.org/10.1093/neuonc/nou087 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Stupp R, Mason WP, Van Den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 35210:987–996.  https://doi.org/10.1056/NEJMoa043330 CrossRefGoogle Scholar
  3. 3.
    Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466.  https://doi.org/10.1016/S1470-2045(09)70025-7 CrossRefPubMedGoogle Scholar
  4. 4.
    Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820.  https://doi.org/10.1007/s00401-016-1545-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Paulus W, Bayas A, Ott G, Roggendorf W (1994) Interphase cytogenetics of glioblastoma and gliosarcoma. Acta Neuropathol 88(5):420–425.  https://doi.org/10.1007/BF00389493 CrossRefPubMedGoogle Scholar
  6. 6.
    Biernat W, Aguzzi A, Sure U, Grant JW, Kleihues P, Hegi ME (1995) Identical mutations of the p53 tumor suppressor gene in the gliomatous and the sarcomatous components of gliosarcomas suggest a common origin from glial cells. J Neuropathol Exp Neurol 54(5):651–656CrossRefGoogle Scholar
  7. 7.
    Reis RM, Könü-Lebleblicioglu D, Lopes JM, Kleihues P, Ohgaki H (2000) Genetic profile of gliosarcomas. Am J Pathol 156(2):425–432.  https://doi.org/10.1016/S0002-9440(10)64746-3 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Walker C, Joyce KA, Thompson-Hehir J et al (2001) Characterisation of molecular alterations in microdissected archival gliomas. Acta Neuropathol 101(4):321–333.  https://doi.org/10.1007/s004010000259 CrossRefPubMedGoogle Scholar
  9. 9.
    Actor B, Ludwig Cobbers JMJ, Büschges R et al (2002) Comprehensive analysis of genomic alterations in gliosarcoma and its two tissue components. Genes Chromosomes Cancer 34(4):416–427.  https://doi.org/10.1002/gcc.10087 CrossRefPubMedGoogle Scholar
  10. 10.
    Boerman RH, Anderi K, Herath J et al (1996) The glial and mesenchymal elements of gliosarcomas share similar genetic alterations. J Neuropathol Exp Neurol 55(9):973–981CrossRefGoogle Scholar
  11. 11.
    Kozak KR, Mahadevan A, Moody JS (2009) Adult gliosarcoma: epidemiology, natural history and factors associated with outcome. Neuro Oncol 11(2):183–191.  https://doi.org/10.1215/15228517 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Walker GV, Gilbert MR, Prabhu SS, Brown PD, McAleer MF (2013) Temozolomide use in adult patients with gliosarcoma: an evolving clinical practice. J Neurooncol 112(1):83–89.  https://doi.org/10.1007/s11060-012-1029-7 CrossRefPubMedGoogle Scholar
  13. 13.
    Frandsen J, Orton A, Jensen R et al (2017) Patterns of care and outcomes in gliosarcoma: an analysis of the National Cancer Database. J Neurosurg  https://doi.org/10.3171/2016.12.JNS162291 CrossRefPubMedGoogle Scholar
  14. 14.
    Morantz R, Feigin I, Ransohoff J (1976) Clinical and pathological study of 24 cases of gliosarcoma. J Neurosurg 45(4):398–408.  https://doi.org/10.3171/jns.1976.45.4.0398 CrossRefPubMedGoogle Scholar
  15. 15.
    Meis JM, Martz KL, Nelson JS (1991) Mixed glioblastoma multiforme and sarcoma. A clinicopathologic study of 26 Radiation Therapy Oncology Group cases. Cancer 67(9):2342–2349CrossRefGoogle Scholar
  16. 16.
    Perry JR, Ang LC, Bilbao JM, Muller PJ (1995) Clinicopathologic features of primary and postirradiation cerebral gliosarcoma. Cancer 75(12):2910–2918. https://doi.org/10.1002/1097-0142(19950615)75:12<2910::AID-CNCR2820751219>3.0.CO;2-A.CrossRefPubMedGoogle Scholar
  17. 17.
    Galanis E, Buckner JC, Dinapoli RP et al (1998) Clinical outcome of gliosarcoma compared with glioblastoma multiforme: North Central Cancer Treatment Group results. J Neurosurg 89(3):425–430.  https://doi.org/10.3171/jns.1998.89.3.0425 CrossRefPubMedGoogle Scholar
  18. 18.
    Lutterbach J, Guttenberger R, Pagenstecher A (2001) Gliosarcoma: a clinical study. Radiother Oncol 61:57–64CrossRefGoogle Scholar
  19. 19.
    Adeberg S, Bernhardt D, Harrabi SB, et al (2016) Radiotherapy plus concomitant temozolomide in primary gliosarcoma. J Neurooncol 128(2):341–348.  https://doi.org/10.1007/s11060-016-2117-x CrossRefPubMedGoogle Scholar
  20. 20.
    Han SJ, Yang I, Tihan T, Chang SM, Parsa AT (2010) Secondary gliosarcoma: a review of clinical features and pathological diagnosis. J Neurosurg 112(1):26–32.  https://doi.org/10.3171/2009.3.JNS081081 CrossRefPubMedGoogle Scholar
  21. 21.
    Han SJ, Yang I, Ahn BJ et al (2010) Clinical characteristics and outcomes for a modern series of primary gliosarcoma patients. Cancer.  https://doi.org/10.1002/cncr.24857 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ortega A, Nuño M, Walia S, Mukherjee D, Black KL, Patil CG (2014) Treatment and survival of patients harboring histological variants of glioblastoma. J Clin Neurosci 21(10):1709–1713.  https://doi.org/10.1016/j.jocn.2014.05.003 CrossRefPubMedGoogle Scholar
  23. 23.
    Thakkar JP, Dolecek TA, Horbinski C et al (2014) Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 23(10):1985–1996.  https://doi.org/10.1158/1055-9965.EPI-14-0275 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wu C-C, Wang TJC, Jani A et al (2016) A modern radiotherapy series of survival in Hispanic patients with glioblastoma. World Neurosurg 88:260–269.  https://doi.org/10.1016/j.wneu.2015.12.081 CrossRefPubMedGoogle Scholar
  25. 25.
    Castelli J, Feuvret L, Haoming QC et al (2016) Prognostic and therapeutic factors of gliosarcoma from a multi-institutional series. J Neurooncol 129(1):85–92.  https://doi.org/10.1007/s11060-016-2142-9 CrossRefPubMedGoogle Scholar
  26. 26.
    Rath G, Sharma D, Mallick S et al (2015) Clinical outcome of patients with primary gliosarcoma treated with concomitant and adjuvant temozolomide: a single institutional analysis of 27 cases. Indian J Cancer 52(4):599.  https://doi.org/10.4103/0019-509X.178407 CrossRefPubMedGoogle Scholar
  27. 27.
    Damodaran O, Van Heerden J, Nowak AK et al (2014) Clinical management and survival outcomes of gliosarcomas in the era of multimodality therapy. J Clin Neurosci 21(3):478–481.  https://doi.org/10.1016/j.jocn.2013.07.042 CrossRefPubMedGoogle Scholar
  28. 28.
    Biswas A, Kumar N, Kumar P et al (2011) Primary gliosarcoma—clinical experience from a regional cancer centre in north India. Br J Neurosurg 25(6):723–729.  https://doi.org/10.3109/02688697.2011.570881 CrossRefPubMedGoogle Scholar
  29. 29.
    Kang SH, Park KJ, Kim CY et al (2011) O6-methylguanine DNA methyltransferase status determined by promoter methylation and immunohistochemistry in gliosarcoma and their clinical implications. J Neurooncol 101(3):477–486.  https://doi.org/10.1007/s11060-010-0267-9 CrossRefPubMedGoogle Scholar
  30. 30.
    Cachia D, Kamiya-Matsuoka C, Mandel JJ et al (2015) Primary and secondary gliosarcomas: clinical, molecular and survival characteristics. J Neurooncol 125(2):401–410.  https://doi.org/10.1007/s11060-015-1930-y CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang G, Huang S, Zhang J, Wu Z, Lin S, Wang Y (2016) Clinical outcome of gliosarcoma compared with glioblastoma multiforme: a clinical study in Chinese patients. J Neurooncol 127(2):355–362.  https://doi.org/10.1007/s11060-015-2046-0 CrossRefPubMedGoogle Scholar
  32. 32.
    Lee D, Kang SY, Suh YL, Jeong JY, Lee JI, Nam DH (2012) Clinicopathologic and genomic features of gliosarcomas. J Neurooncol 107(3):643–650.  https://doi.org/10.1007/s11060-011-0790-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Deborah R. Smith
    • 1
  • Cheng-Chia Wu
    • 1
  • Heva J. Saadatmand
    • 1
  • Steven R. Isaacson
    • 1
    • 2
  • Simon K. Cheng
    • 1
    • 3
  • Michael B. Sisti
    • 2
    • 3
  • Jeffrey N. Bruce
    • 2
    • 3
  • Sameer A. Sheth
    • 2
  • Andrew B. Lassman
    • 3
    • 4
  • Fabio M. Iwamoto
    • 3
    • 4
  • Shih-Hsiu Wang
    • 5
  • Peter Canoll
    • 3
    • 5
  • Guy M. McKhann2nd
    • 2
    • 3
  • Tony J. C. Wang
    • 1
    • 3
  1. 1.Department of Radiation OncologyColumbia University Medical CenterNew YorkUSA
  2. 2.Department of Neurological SurgeryColumbia University Medical CenterNew YorkUSA
  3. 3.Herbert Irving Comprehensive Cancer CenterColumbia University Medical CenterNew YorkUSA
  4. 4.Department of NeurologyColumbia University Medical CenterNew YorkUSA
  5. 5.Department of Pathology and Cell BiologyColumbia University Medical CenterNew YorkUSA

Personalised recommendations