Skip to main content
Log in

Effects of protein synthesis inhibitors on the sensitization of a defensive response in common snails and potentiation of the cholinosensitivity of command neurons

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The effects of protein synthesis inhibitors on short-term sensitization of a defensive reaction in common snails and the potentiation of the cholinosensitivity of command neurons were studied. The protein synthesis inhibitor anisomycin did not prevent behavioral sensitization. Anisomycin and the irreversible protein synthesis inhibitor saporin changed the dynamics of potentiation of command neuron cholinosensitivity. We suggest that the sensitization of the defensive response of the common snail studied here does not require the synthesis of new proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Abramova, E. I. Drozdova, V. L. Nistratova, and A. S. Pivovarov, “Relationship between posttetanic potentiation of the cholinosensitivity of neurons in the common snail and the humoral factor,” Zh. Vyssh. Nerv. Deyat., 53, No. 5, 533–536 (2003).

    CAS  Google Scholar 

  2. M. S. Abramova, V. L. Nistratova, A. A. Moskvitin, and A. S. Pivovarov, “Methiothepin-sensitive serotonin receptors are involved in the postsynaptic mechanism of sensitization of the defensive reaction in the common snail,” Zh. Vyssh. Nerv. Deyat., 55, No. 3, 408–415 (2005).

    Google Scholar 

  3. P. M. Balaban, “Sensitization and acclimation in defensive behavior command neurons in the common snail,” Zh. Vyssh. Nerv. Deyat., 28, No. 2, 356–363 (1978).

    CAS  Google Scholar 

  4. Kh. L. Gainutdinov, V. V. Andrianov, and T. Kh. Gainutdinova, Membrane Mechanisms of Behavioral Plasticity During Learning [in Russian], KazFTI, Kazan Scientific Center, Russian Academy of Sciences, Kazan (2002).

    Google Scholar 

  5. T. Kh. Gainutdinova, R. R. Tagirova, A. I. Ismailova, L. N. Muranova, Kh. L. Gainutdinov, and P. M. Balaban, “Protein synthesis-dependent reactivation of a contextual conditioned reflex in the common snail,” Zh. Vyssh. Nerv. Deyat., 54, No. 6, 795–800 (2004).

    Google Scholar 

  6. L. N. Grinkevich, P. D. Lisachev, and M. B. Shtark, “Neurochemical correlates of plasticity,” Zh. Vyssh. Nerv. Deyat., 43, No. 5, 963–968 (1993).

    CAS  Google Scholar 

  7. E. Kandel, The Cellular Bases of Behavior [Russian translation] Mir, Moscow (1980).

    Google Scholar 

  8. O. A. Maksimovich and P. M. Balaban, “Neural Mechanisms of Behavioral Plasticity [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  9. A. A. Moskvitin and A. S. Pivovarov, “Apparatus for recording defensive responses in terrestrial snails to tactile stimulation,” Zh. Vyssh. Nerv. Deyat., 53, No. 2, 249–252 (2003).

    Google Scholar 

  10. V. P. Nikitin, “Molecular-cellular mechanisms of learning in the common snail,” Zh. Vyssh. Nerv. Deyat., 43, No. 2, 377–388 (1993).

    CAS  Google Scholar 

  11. V. P. Nikitin and S. A. Kozyrev, “Long-term synaptic facilitation in the defensive behavior neuron in snails during acquisition of sensitive depends on RNA synthesis,” Zh. Vyssh. Nerv. Deyat., 54, No. 2, 260–268 (2004).

    CAS  Google Scholar 

  12. B. P. Nikitin, S. A. Kozyrev, M. M. Gvozdeva, A. V. Shevelkin, and V. V. Sherstnev, “Protein synthesis inhibitors reproduce the effects of nociceptive sensitization on defensive and food-related responses in the common snail,” Zh. Vyssh. Nerv. Deyat., 44, No. 6, 1004–1015 (1994).

    CAS  Google Scholar 

  13. A. S. Pivovarov and I. E. Drozdova, “Dose-dependence of the excitatory effects of acetylcholine on common snail neurons after orthodromic tetanization,” Zh. Vyssh. Nerv. Deyat., 51, No. 1, 117–119 (2001).

    CAS  Google Scholar 

  14. A. S. Pivovarov and E. I. Drozdova, “Identification of cholinoreceptors on the body of neurons LPa3 and RPa3 in the common snail,” Neirofiziologiya, 24, No. 1, 77–86 (1992).

    CAS  Google Scholar 

  15. A. S. Pivovarov, E. I. Drozdova, and A. A. Moskvitin, “Generalized posttetanic changes in excitatory postsynaptic and acetylcholine-evoked currents in common snail neurons,” Zh. Vyssh. Nerv. Deyat., 49, No. 6, 990-998 (1999).

    Google Scholar 

  16. C. H. Bailey, D. Bartsch, and E. R. Kandel, “Toward a molecular definition of long-term memory storage,” Proc. Natl. Acad. Sci. USA, 26, No. 93, 13445–13452 (1996).

    Google Scholar 

  17. C. H. Bailey, M. Giustetto, H. Zhu, M. Chen, and E. R. Kandel, “A novel function for serotonin-mediated short-term facilitation in Aplysia: conversion of a transient, cell-wide homosynaptic Hebbian plasticity into a persistent, protein synthesis-independent synapsespecific enhancement,” Proc. Natl. Acad. Sci. USA, 97, No. 21, 11591–11586 (2000).

    Google Scholar 

  18. P. M. Balaban, D. A. Poteryaev, I. S. Zakharov, P. Uvarov, A. Malyshev, and A. V. Belyavsky, “Up-and down-regulation of Helix command-specific 2 (HCS2) gene expression in the nervous system of terrestrial snail Helix lucorum,” J. Neurosci., 103, No. 2, 551–559 (2001).

    Article  CAS  Google Scholar 

  19. A. Bolognesi, F. Olivieri, L. Battelli, L. Barbieri, A. I. Falasca, A. Parente, F. Del Vecchio Blanco, and F. Stipe, “Ribosome-inactivating proteins (RNA N-glycosidases) from the seeds of Saponaria ocymoides and Vaccaria pyramidata,” Eur. J. Biochem., 228, No. 3, 935–940 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. P. Calabresi, A. Pisani, N. B. Mercuri, and G. Bernardi, “Post-receptor mechanisms underlying striatal long-term depression,” J. Neurosci., 14, No. 8, 4871–4881 (1994).

    PubMed  CAS  Google Scholar 

  21. M. Ghirardi, F. Benfenati, S. Giovedi, F. Fuimara, C. Milanese, and P. G. Montarolo, “Inhibition of neurotransmitter release by a non-physiological target requires protein synthesis and involves cAMP-dependent and mitogen-activated protein kinases,” J. Neurosci., 24, No. 21, 5054–5062 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. M. Ghirardi, P. G. Montarolo, and E. R. Kandel, “A novel intermediate stage in the transition between short-and long-term facilitation in the sensory to motor neuron synapse in Aplysia,” Neuron, 14, No. 2, 413–420 (1995).

    Article  PubMed  CAS  Google Scholar 

  23. R. A. Chitwood, Q. Li, and D. L. Glanzman, “Serotonin facilitates AMPA-type responses in isolated siphon motor neurons of Aplysia in culture,” J. Physiol., 534, No. 2, 501–510 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. J. Mauelshagen, G. R. Parker, and T. J. Carew, “Dynamics of induction and expression of long-term synaptic facilitation in Aplysia,” J. Neurosci., 16, No. 22, 7099–7108 (1996).

    PubMed  CAS  Google Scholar 

  25. P. G. Montarolo, P. Goelet, V. F. Castellucci, J. Morgan, E. R. Kandel, and S. Schacher, “A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia,” Science, 234, No. 4781, 1249–1254 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. P. C. Schwindt, W. J. Spain, and W. E. Crill, “Effects of intracellular calcium chelation on voltage-dependent and calcium-dependent currents in cat neocortical neurons,” Neurosci., 47, No. 3, 571–578 (1992).

    Article  CAS  Google Scholar 

  27. M. A. Sutton, M. W. Bagnall, S. K. Sharma, J. Shobe, and T. J. Carew, “Intermediate-term memory for site-specific sensitization in Aplysia is maintained by persistent activation of protein kinase C,” J. Neurosci., 24, No. 14, 3600–2609 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. B. Torocsik and J. Szeberenyi, “Anisomycin uses multiple mechanisms to stimulate mitogen-activated protein kinases and gene expression and to inhibit neuronal differentiation in PC12 phaeochromocytoma cells,” Eur. J. Neurosci., 12, No. 2, 527–532 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. L. E. Trudeau and V. Castellucci, “Postsynaptic modifications in long-term facilitation in Aplysia: upregulation of excitatory amino acid receptors,” J. Neurosci., 15, No. 2, 1275–1284 (1995).

    PubMed  CAS  Google Scholar 

  30. M. W. Wood, J. A. Segal, R. J. Mark, A. M. Ogden, and C. C. Felder, “Inflammatory cytokines enhance muscarinic-mediated arachidonic acid release through p38 mitogen-activated protein kinase in A2058 cells,” J. Neurochem., 74, No. 5, 2033–2040 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 56, No. 3, pp. 355–362, May–June, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramova, M.S., Moskvitin, A.A. & Pivovarov, A.S. Effects of protein synthesis inhibitors on the sensitization of a defensive response in common snails and potentiation of the cholinosensitivity of command neurons. Neurosci Behav Physiol 37, 443–449 (2007). https://doi.org/10.1007/s11055-007-0033-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-007-0033-4

Key words

Navigation