Magnetic phases at the molecular scale: the case of cylindrical Co nanoparticles

  • Pablo DíazEmail author
  • Eugenio E. Vogel
  • Francisco Munoz
Research Paper


The magnetic phases of cobalt nanocylinders at the molecular scale have been studied by means of density functional theory together with micromagnetism. Diameters of the objects are under 1 nm. The magnetic phases resulting from first-principle calculations are far from obvious and quite different from both semiclassical results and extrapolations from what is measured for larger objects. These differences reinforce the importance of the quantum mechanical approach for small nanoscopic particles. One of the main results reported here is precisely the unexpected order in the last filled orbitals, which produce objects with alternating magnetic properties as the length of the cylinder increases. The resulting anisotropy is not obvious. The vortex phase is washed out due to the aspect ratio of the systems and the strength of the exchange constants for Co. Nevertheless, we do a pedagogical experiment by turning gradually down the exchange constants to investigate the kind of vortex states which are hidden underneath the ferromagnetic phases.


Nanoparticles Nanowires Magnetic phases In-plane Off-plane Anisotropy Biomedical applications 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


This work was partially supported by the Universidad de La Frontera DIUFRO project under grant DI14-0067. Partial support from the following Chilean sources is acknowledged: Fondecyt (Chile) under contracts 1150019, 1150806 and Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia (Chile) through the Center for Development of Nanoscience and Nanotechnology (CEDENNA, Contract FB0807).


  1. Aguilera-Granja F, Montejano-Carrizales JM, Vogel EE (2014) Structural and electronic properties of magnetic cylinders at the atomic scale. Eur Phys J D 68(2):38CrossRefGoogle Scholar
  2. Aguilera-Granja F, Montejano-Carrizales JM, Vogel EE (2016) Structural and oxidation properties of coni nanowires. Eur Phys J D 70(6):137CrossRefGoogle Scholar
  3. Antonel PS, Oliveira CLP, Jorge GA, Perez OE, Leyva AG, Negri RM (2015) Synthesis and characterization of cofe2o4 magnetic nanotubes, nanorods and nanowires. formation of magnetic structured elastomers by magnetic field-induced alignment of cofe2o4 nanorods. J Nanoparticle Res 17(7):294CrossRefGoogle Scholar
  4. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  5. Bryan MT, Bance S, Dean J, Schrefl T, Allwood DA (2012) Transverse and vortex domain wall structure in magnetic nanowires with uniaxial in-plane anisotropy. J Phys Condens Matter 24(2):024205CrossRefGoogle Scholar
  6. D’Albuquerque e Castro J, Altbir D, Retamal JC, Vargas P (2002) Scaling approach to the magnetic phase diagram of nanosized systems. Phys Rev Lett 88:237202CrossRefGoogle Scholar
  7. Dorantes-Davila J, Pastor GM (2005) Magnetic reorientation transitions along the crossover from one-dimensional to two-dimensional transition-metal nanostructures. Phys Rev B 72:085427CrossRefGoogle Scholar
  8. Douvalis AP, Bourlinos AB, Tucek J, Čépe K, Bakas T, Zboril R (2016) Development of novel fept/nanodiamond hybrid nanostructures: L10 phase size-growth suppression and magnetic properties. J Nanoparticle Res 18(5):115CrossRefGoogle Scholar
  9. Gambardella P, Dallmeyer A, Maiti K, Malagoli M, Eberhardt W, Kern K, Carbone C (2002) Ferromagnetism in one-dimensional monatomic metal chains. Nature 416(6878):301–304CrossRefGoogle Scholar
  10. Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40(6):3443–3449CrossRefGoogle Scholar
  11. Gómez-Polo C, Larumbe S, Barquín LF, Fernández LR (2016) Magnetic induction heating as a new tool for the synthesis of fe3o4–tio2 nanoparticle systems. J Nanoparticle Res 18(5):118CrossRefGoogle Scholar
  12. Hobbs D, Kresse G, Hafner J (2000) Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys Rev B 62(17):11556–11570CrossRefGoogle Scholar
  13. Hong J, Wu RQ (2003) First principles calculations of magnetic anisotropy energy of co monatomic wires. Phys Rev B 67:020406CrossRefGoogle Scholar
  14. Kresse G, Furthmüller J (1996a) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mat Sci 6:15CrossRefGoogle Scholar
  15. Kresse G, Furthmüller J (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  16. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRefGoogle Scholar
  17. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269CrossRefGoogle Scholar
  18. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  19. Landau LP, Lifshitz EM (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjetunion 8:153–169Google Scholar
  20. Landeros P, Escrig J, Altbir D, Bahiana M, e Castro J (2006) Stability of magnetic configurations in nanorings. J Appl Phys 100(4):044311CrossRefGoogle Scholar
  21. Li F, Wang T, Ren L, Sun J (2004) Structure and magnetic properties of co nanowires in self-assembled arrays. J Phys Condens Matter 16(45):8053CrossRefGoogle Scholar
  22. Munoz F, Romero AH, Mejia-Lopez J, Moran-Lopez JL (2013) Finite size effects on the magnetocrystalline anisotropy energy in fe magnetic nanowires from first principles. J Nanopart Res 15(4):1–11CrossRefGoogle Scholar
  23. Nielsch K, Castano FJ, Matthias S, Lee W, Ross CA (2005) Synthesis of cobalt/polymer multilayer nanotubes. Adv Eng Mater 7(4):217–221CrossRefGoogle Scholar
  24. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  25. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [phys. rev. lett. 77, 3865 (1996)]. Phys Rev Lett 78:1396–1396CrossRefGoogle Scholar
  26. Raphael MP, Christodoulides JA, Qadri SN, Simpkins BS, Byers JM (2010) Magnetic moment degradation of nanowires in biological media: real-time monitoring with squid magnetometry. Nanotechnology 21(28):285101CrossRefGoogle Scholar
  27. Sayed F, Labaye Y, Sayed Hassan R, El Haj Hassan F, Yaacoub N, Greneche J-M (2016) Size and thickness effect on magnetic structures of maghemite hollow magnetic nanoparticles. J Nanoparticle Res 18(9):1–11CrossRefGoogle Scholar
  28. Velázquez-Galván Y, Martínez-Huerta JM, Medina JDLT, Danlée Y, Piraux L, Encinas A (2014) Dipolar interaction in arrays of magnetic. J Phys Condens Matter 26(2):026001CrossRefGoogle Scholar
  29. Vogel EE, Vargas P, Altbir D, Escrig J (2010) Handbook of nanophysics, vol 4. CRC press,Google Scholar
  30. Xie J, Chen L, Varadan VK, Yancey J, Srivatsan M (2008) The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of pc12 cells. Nanotechnology 19(10):105101CrossRefGoogle Scholar
  31. Zhang W, Singh R, Bray-Ali N, Haas S (2008) Scaling analysis and application: Phase diagram of magnetic nanorings and elliptical nanoparticles. Phys Rev B 77:144428CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Departamento de Ciencias FísicasUniversidad de La FronteraCasillaChile
  2. 2.Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNASantiagoChile
  3. 3.Departamento de Física, Facultad de CienciasUniversidad de ChileSantiagoChile

Personalised recommendations