Advertisement

Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study

  • C. MotzkusEmail author
  • T. Macé
  • F. Gaie-Levrel
  • S. Ducourtieux
  • A. Delvallee
  • K. Dirscherl
  • V.-D. Hodoroaba
  • I. Popov
  • O. Popov
  • I. Kuselman
  • K. Takahata
  • K. Ehara
  • P. Ausset
  • M. Maillé
  • N. Michielsen
  • S. Bondiguel
  • F. Gensdarmes
  • L. Morawska
  • G. R. Johnson
  • E. M. Faghihi
  • C. S. Kim
  • Y. H. Kim
  • M. C. Chu
  • J. A. Guardado
  • A. Salas
  • G. Capannelli
  • C. Costa
  • T. Bostrom
  • Å. K. Jämting
  • M. A. Lawn
  • L. Adlem
  • S. Vaslin-Reimann
Research Paper

Abstract

Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—“Properties of Nanoparticle Populations” of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 “Techniques for characterizing size distribution of airborne nanoparticles”. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.

Keywords

Scanning and transmission electron microscopies Atomic force microscopy Scanning mobility particle size spectrometers Metrological traceability SiO2 nano-aerosol size distribution Interlaboratory comparison 

Notes

Acknowledgments

We gratefully acknowledge financial support by C’Nano for LNE, LISA and IRSN laboratories. ILAQH and QUT laboratories acknowledge the support of the Australian Research Council through the Grants DP1112773 and LP1110056. Work at NMIA was supported by the Australian Government’s National Enabling Technologies Strategy. The authors warmly thank J.-M. Aublant (LNE) and J. Fagan (NIST) for supporting this study as project 3 “Techniques for characterizing size distribution of airborne nanoparticles” in the VAMAS framework. The authors acknowledge valuable contributions by H. J. Catchpoole (NMIA), V. A. Coleman (NMIA), J. Herrmann (NMIA), M. Roy (NMIA), P. Palmas (LNE), H. M. Park (KRISS), and F. Calcagnino (UNIGE). We also thank Sukhvir Singh, Prabhat Kumar Gupta, Shankar Aggarwal, Bibhash Chakraborty of the National Physical Laboratory of India (NPLI), and P. Quincey of the UK’s National Physical Laboratory (NPL) for their implication and technical advices for this project.

References

  1. AFSSET (2006) Les nanomatériaux, effets sur la santé de l’homme et de l’environnement. Agence française de sécurité sanitaire de l’environnement et du travailGoogle Scholar
  2. Allen MD, Raabe OG (1985) Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Sci Technol 4:269–286CrossRefGoogle Scholar
  3. Asbach C, Kaminski H, Fissan H, Monz C, Dahmann D, Mülhopt S, Paur HR, Heinz JK, Herrmann F, Voetz M, Kuhlbusch T (2009) Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. J Nanopart Res 11:1593–1609CrossRefGoogle Scholar
  4. Bau S, Ouf FX, Miquel S, Rastoix O, Witschger O (2010) Experimental measurement of the collection efficiency of nanoparticles samplers based on electrostatic and thermophoretic precipitation. International Aerosol Conference, August 29–September 3, 2010, Helsinki, FinlandeGoogle Scholar
  5. Buhr E, Senftleben N, Klein T, Bergmann D, Gnieser D, Frase CG, Bosse H (2009) Characterization of nanoparticles by scanning electron microscopy in transmission mode. Meas Sci Technol 20:084025CrossRefGoogle Scholar
  6. Cadle SH, Mulawa PA (1990) Atmospheric carbonaceous species measurement methods comparison study: general motors results. Aerosol Sci Technol 12:128–141CrossRefGoogle Scholar
  7. Calzolai G, Chiari M, Lucarelli F, Mazzei F, Nava S, Prati P, Valli G, Vecchi R (2008) PIXE and XRF analysis of particulate matter samples: an inter-laboratory comparison. Nucl Instrum Methods Phys Res B 266:2401–2404CrossRefGoogle Scholar
  8. Collins TJ (2007) Image J for microscopy. Biotechniques 43(1 Suppl):25–30CrossRefGoogle Scholar
  9. Countess RJ (1990) Interlaboratory analyses of carbonaceous aerosol samples. Aerosol Sci Technol 12(1):114–121CrossRefGoogle Scholar
  10. Cyrs WD, Boysen DA, Casuccio G, Lersch T, Peters TM (2010) Nanoparticle collection efficiency of capillary pore membrane filters. J Aerosol Sci 41:655–664CrossRefGoogle Scholar
  11. Dixkens J, Fissan H (1999) Development of an electrostatic precipitator for off-line particle analysis. Aerosol Sci Technol 30:438–453CrossRefGoogle Scholar
  12. EC (2009) Preparing for our future: developing a common strategy for key enabling technologies in the EU, COMGoogle Scholar
  13. EC (2011a) Key Enabling Technologies- Final - Report June 2011Google Scholar
  14. EC (2011b) Commission recommendation on the definition of nanomaterials. BrusselsGoogle Scholar
  15. Ehara K, Mulholland GW, Hagwood RC (2000) Determination of arbitrary moments of aerosol size distribution from measurements with a differential mobility analyzer. Aerosol Sci Technol 32:434–452CrossRefGoogle Scholar
  16. Environmental Protection Agency (1987) Federal register. Rules Regul 52(210):41880–41881Google Scholar
  17. Fissan H, Hummes D, Stratmann F, Büscher P, Neumann S, Pui DYH, Chen D (1996) Experimental comparison of four differential mobility analyzers for nanometer aerosol measurements. Aerosol Sci Technol 24:1–13CrossRefGoogle Scholar
  18. Giechaskiel B, Dilara P, Andersson J (2008) Particle measurement programme (PMP) light-duty inter-laboratory exercise: repeatability and reproducibility of the particle number method. Aerosol Sci Technol 42:528–543CrossRefGoogle Scholar
  19. Hering SV, Appel BR, Cheng W, Salaymeh F, Cadle SH, Mulawa PA, Cahill TA, Eldred RA, Surovik M, Fitz D, Howes JE, Knapp KT, Stockburger L, Turpin BJ, Huntzicker JJ, Zhang X, McMurry PH (1990) Comparison of sampling methods for carbonaceous aerosols in ambient air. Aerosol Sci Technol 12:200–213CrossRefGoogle Scholar
  20. ISO (1994) Accuracy (trueness and precision) of measurement methods and results—part 2: basic method for the determination of repeatability and reproducibility of a standard measurement method, ISO 5725-2Google Scholar
  21. ISO (2007) Workplace atmospheres—ultrafine, nanoparticle and nanostructured aerosols—inhalation exposure characterization and assessment, ISO/TR 27628Google Scholar
  22. ISO (2009) Determination of particle size distribution-differential electrical mobility analysis for aerosol particles, ISO 15900Google Scholar
  23. ISO (2010) Conformity assessment—general requirements for proficiency testing, ISO 17043Google Scholar
  24. ISO (2011) Workplace atmosphere characterization of ultrafine aerosols/nanoaerosols—determining the size distribution and number concentration using differential electrical mobility analyzing systems, ISO 28439Google Scholar
  25. ISO (2012) Air quality—sampling conventions for airborne particle deposition in the human respiratory system, ISO/CD 13138Google Scholar
  26. Jeong C-H, Evans GJ (2009) Inter-comparison of a fast mobility particle sizer and a scanning mobility particle sizer incorporating an ultrafine water-based condensation particle counter. Aerosol Sci Technol 43:364–373CrossRefGoogle Scholar
  27. Lahmani M, Marano F, Houdy P (2010) Les nanosciences. Tome 4: Nanotoxicologie et nanoéthique. Paris, éditions BelinGoogle Scholar
  28. Li C, Liu S, Zhu Y (2010) Determining ultrafine particle collection efficiency in a nanometer aerosol sampler. Aerosol Sci Technol 44:1027–1041CrossRefGoogle Scholar
  29. Maynard AD, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanopart Res 7:587–614CrossRefGoogle Scholar
  30. Maynard AD, Pui DYH (2007) Nanotechnology and occupational health: new technologies—new challenges. J Nanopart Res 9:1–3CrossRefGoogle Scholar
  31. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker HJ, Warheit D (2006) Safe handling of nanotechnology. Nature 444:267–269CrossRefGoogle Scholar
  32. Motzkus C, Macé T, Vaslin-Reimann S (2010) Techniques for characterizing morphology and size of airborne nanoparticles. Congrès Metrology of Airborne Nanoparticles, Standardisation and Applications (MANSA), Abstract Proceeding, 8–9 June 2010, NPL TeddingtonGoogle Scholar
  33. Motzkus C, Macé T, Vaslin-Reimann S, Soukiassian L, Ducourtieux D, Michielsen N, Gensdarmes F, Sillon P, Ausset P, Maillé M (2011) Travaux prénormatifs sur la caractérisation des nanoparticules dans l’air : Qualification d’un protocole de génération d’un aérosol nanométrique de SiO2, Abstract Proceeding, CFA, January 2011, Paris, Google Scholar
  34. Motzkus C, Macé T, Vaslin-Reimann S, Soukiassian L, Ducourtieux D, Michielsen N, Gensdarmes F, Sillon P, Ausset P, Maillé M (2012) Qualification of generation protocol of nanometer aerosol of SiO2. Revue française de métrologie 29:31–37CrossRefGoogle Scholar
  35. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  36. Oberdörster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8CrossRefGoogle Scholar
  37. Oberdörster G, Maynard AD, Donaldson K, Castranova V, Fritzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle Fiber Technol 2:1–35Google Scholar
  38. Rasband WS (1997–2009) Image J, US National Institute of Health, Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/. Accessed 07 Jan 2013
  39. Rodrigue J, Dhaniyala S, Ranjan M, Hopke PK (2007) Performance comparison of scanning electrical mobility spectrometers. Aerosol Sci Technol 41:360–368CrossRefGoogle Scholar
  40. Schmid H, Laskus L, Abraham HJ, Baltensperger U, Lavanchy V, Bizjak M, Burba P, Cachier H, Crow D, Chow J, Gnauk T, Even A, Brink HM, Giesen KP, Hitzenberger R, Hueglin C, Maenhaut W, Pio C, Carvalho A, Putaud J-P, Toom-Sauntry D, Puxbaum H (2011) Results of the carbon conference international aerosol carbon round robin test stage I. Atmos Environ 35:2111–2121CrossRefGoogle Scholar
  41. Sebastien P, Billon MA, Janson X, Bonnaud G, Bignon J (1978) Utilisation du microscope électronique à transmission (MET) pour la mesure des contaminations par l'amiante. Arch Mal Prof Med Trav 39:229–248Google Scholar
  42. Slowik JG, Cross ES, Han J-H, Davidovits P, Onasch TB, Jayne JT, Williams LR, Canagaratna MR, Worsnop DR, Chakrabarty RK, Moosmüller H, Arnott WP, Schwarz JP, Gao R-U, Fahey DW, Kok GL, Petzold A (2007) An inter-comparison of instruments measuring black carbon content of soot particles. Aerosol Sci Technol 41:295–314CrossRefGoogle Scholar
  43. Spurny KR (1994) Sampling analysis, identification and monitoring of fibrous dust and aerosols. Analyst 119:41–51CrossRefGoogle Scholar
  44. Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials. Part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50CrossRefGoogle Scholar
  45. Wiedensohler A (1988) An approximation of the bipolar charge distribution for particles in the submicron size range. J Aerosol Sci 19:387–389CrossRefGoogle Scholar
  46. Wiedensohler A, Aalto P, Covert D, Heintzenberg J, McMurry P (1993) Intercomparison of three methods to determine size distributions of ultrafine aerosols with low number concentrations. J Aerosol Sci 24:551–554CrossRefGoogle Scholar
  47. Wiedensohler A, Birmili W, Nowak A, Sonntag A, Weinhold K, Merkel M, Wehner B, Tuch T, Pfeifer S, Fiebig M, Fjäraa AM, Asmi E, Sellegri K, Depuy R, Venzac H, Villani P, Laj P, Aalto P, Ogren JA, Swietlicki E, Roldin P, Williams P, Quincey P, Hüglin C, Fierz-Schmidhauser R, Gysel M, Weingartner E, Riccobono F, Santos S, Grüning C, Faloon K, Beddows D, Harrison RM, Monahan C, Jennings SG, O’Dowd CD, Marinoni A, Horn H-G, Keck L, Jiang J, Scheckman J, McMurry PH, Deng Z, Zhao CS, Moerman M, Henzing B, de Leeuw G (2012) Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos Meas Technol 5:657–685CrossRefGoogle Scholar
  48. Witschger O, Fabriès JF (2005) Particules ultra-fines et santé au travail. 1—Caractérisation des effets potentiels sur la santé. INRS, Hygiène et Sécurité au Travail (ND 2227) 199:21–35Google Scholar
  49. Witschger O, Le-Bihan O, Reynier M, Durand C, Marchetto A, Zimmermann E, Charpentier D (2012) Préconisations en matière de caractérisation des potentiels d’émission et d’exposition professionnelle aux aérosols lors d’opérations mettant en oeuvre des nanomatériaux. INRS, Hygiène et sécurité au travail (ND 2355) 226:41–55Google Scholar
  50. Zervas E, Dorlhène P, Forti L, Perrin C, Momique JC, Monier R, Ing H, Lopez B (2005) Interlaboratory test of exhaust PM using ELPI. Aerosol Sci Technol 39:333–346CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • C. Motzkus
    • 1
    Email author
  • T. Macé
    • 1
  • F. Gaie-Levrel
    • 1
  • S. Ducourtieux
    • 1
  • A. Delvallee
    • 1
  • K. Dirscherl
    • 2
  • V.-D. Hodoroaba
    • 3
  • I. Popov
    • 4
  • O. Popov
    • 5
  • I. Kuselman
    • 5
  • K. Takahata
    • 6
  • K. Ehara
    • 6
  • P. Ausset
    • 7
  • M. Maillé
    • 7
  • N. Michielsen
    • 8
  • S. Bondiguel
    • 8
  • F. Gensdarmes
    • 8
  • L. Morawska
    • 9
  • G. R. Johnson
    • 9
  • E. M. Faghihi
    • 9
  • C. S. Kim
    • 10
  • Y. H. Kim
    • 10
  • M. C. Chu
    • 10
  • J. A. Guardado
    • 11
  • A. Salas
    • 11
  • G. Capannelli
    • 12
  • C. Costa
    • 12
  • T. Bostrom
    • 13
  • Å. K. Jämting
    • 14
  • M. A. Lawn
    • 14
  • L. Adlem
    • 15
  • S. Vaslin-Reimann
    • 1
  1. 1.Laboratoire National de Métrologie et d’Essais (LNE)Paris Cedex 15France
  2. 2.Danish Fundamental Metrology (DFM)Kgs. LyngbyDenmark
  3. 3.BAM Federal Institute for Materials Research and TestingBerlinGermany
  4. 4.Unit for NanocharacterizationThe Hebrew University of JerusalemJerusalemIsrael
  5. 5.National Physical Laboratory of Israel (INPL)JerusalemIsrael
  6. 6.National Metrology Institute of Japan (NMIJ)National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  7. 7.Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583Université Paris-Est Créteil et Université Paris-DiderotCréteilFrance
  8. 8.PSN-RES, SCA, LPMAInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Gif-sur-YvetteFrance
  9. 9.International Laboratory for Air Quality and Health (ILAQH)Queensland University of Technology (QUT)BrisbaneAustralia
  10. 10.Division of Industrial MetrologyKorea Research Institute of Standards and Science (KRISS)TaejonKorea
  11. 11.Area de Metrología de MaterialesCentro Nacional de Metrología (CENAM)El MarquésMexico
  12. 12.Department of Chemistry and Industrial ChemistryUniversity of Genoa (UNIGE)GenoaItaly
  13. 13.Science and Engineering FacultyQueensland University of Technology (QUT)BrisbaneAustralia
  14. 14.National Measurement Institute Australia (NMIA)LindfieldAustralia
  15. 15.National Metrology Institute of South Africa (NMISA)Lynnwood RidgeSouth Africa

Personalised recommendations