Molecular Biology Reports

, Volume 39, Issue 4, pp 4777–4785 | Cite as

Characterization of splice variants of the genes encoding human mitochondrial HMG-CoA lyase and HMG-CoA synthase, the main enzymes of the ketogenesis pathway

  • Beatriz Puisac
  • Mónica Ramos
  • María Arnedo
  • Sebastián Menao
  • María Concepción Gil-Rodríguez
  • María Esperanza Teresa-Rodrigo
  • Angeles Pié
  • Juan Carlos de Karam
  • Jan-Jaap Wesselink
  • Ignacio Giménez
  • Feliciano J. Ramos
  • Nuria Casals
  • Paulino Gómez-Puertas
  • Fausto G. Hegardt
  • Juan Pié
Article

Abstract

The genes HMGCS2 and HMGCL encode the two main enzymes for ketone-body synthesis, mitochondrial HMG-CoA synthase and HMG-CoA lyase. Here, we identify and describe possible splice variants of these genes in human tissues. We detected an alternative transcript of HMGCS2 carrying a deletion of exon 4, and two alternative transcripts of HMGCL with deletions of exons 5 and 6, and exons 5, 6 and 7, respectively. All splice variants maintained the reading frame. However, Western blot studies and overexpression measurements in eukaryotic or prokaryotic cell models did not reveal HL or mHS protein variants. Both genes showed a similar distribution of the inactive variants in different tissues. Surprisingly, the highest percentages were found in tissues where almost no ketone bodies are synthesized: heart, skeletal muscle and brain. Our results suggest that alternative splicing might coordinately block the two main enzymes of ketogenesis in specific human tissues.

Keywords

HMGCL HMGCS2 Ketone bodies Alternative splicing 

Notes

Acknowledgments

This study was supported by grants from: Diputación General de Aragón (Ref.# Grupo Consolidado B20); University of Zaragoza UZ2007-BIO-13); Spanish Ministry of Education and Science (Ref.# SAF2004-06843-C03), Instituto de Salud Carlos III (CIBER Fisiopatología de la Obesidad y Nutrición), and European Union (FP7-223431 “Divinocell” project; to P.G.-P.). Financial support from the “Fundación Ramón Areces” to CBMSO is also acknowledged. J-J.W. was a recipient of a Torres-Quevedo fellowship financed by Ministerio de Ciencia e Innovación and M.E.T.R. from University of Zaragoza (PIF-UZ-2009-BIO-02). We also thank “Centro de Cálculo Científico” (CCCUAM) for computational support. Work at Biomol-Informatics SL was partially financed by the European Social Fund.

References

  1. 1.
    Boukaftane Y, Duncan A, Wang S, Labuda D, Robert MF, Sarrazin J, Schappert K, Mitchell GA (1994) Human mitochondrial HMG CoA synthase: liver cDNA and partial genomic cloning, chromosome mapping to 1p12–p13, and possible role in vertebrate evolution. Genomics 23:552–559PubMedCrossRefGoogle Scholar
  2. 2.
    Thumelin S, Forestier M, Girard J, Pegorier JP (1993) Developmental changes in mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression in rat liver, intestine and kidney. Biochem J 292(Pt 2):493–496PubMedGoogle Scholar
  3. 3.
    Royo T, Pedragosa MJ, Ayte J, Gil-Gomez G, Vilaro S, Hegardt FG (1993) Testis and ovary express the gene for the ketogenic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. J Lipid Res 34:1636PubMedGoogle Scholar
  4. 4.
    Wang S, Nadeau JH, Duncan A, Robert MF, Fontaine G, Schappert K, Johnson KR, Zietkiewicz E, Hruz P, Miziorko H, Mitchell GA (1993) 3-Hydroxy-3-methylglutaryl coenzyme A lyase (HL): cloning and characterization of a mouse liver HL cDNA and subchromosomal mapping of the human and mouse HL genes. Mamm Genome 4:382–387PubMedCrossRefGoogle Scholar
  5. 5.
    Clinkenbeard KD, Reed WD, Mooney RA, Lane MD (1975) Intracellular localization of the 3-hydroxy-3-methylglutaryl coenzme A cycle enzymes in liver. Separate cytoplasmic and mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A generating systems for cholesterogenesis and ketogenesis. J Biol Chem 250:3108–3116PubMedGoogle Scholar
  6. 6.
    Robinson AM, Williamson DH (1980) Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev 60:143–187PubMedGoogle Scholar
  7. 7.
    Hegardt FG (1999) Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis. Biochem J 338(Pt 3):569–582PubMedCrossRefGoogle Scholar
  8. 8.
    Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6:386–398PubMedCrossRefGoogle Scholar
  9. 9.
    Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126:7–47CrossRefGoogle Scholar
  10. 10.
    Buesa C, Pie J, Barcelo A, Casals N, Mascaro C, Casale CH, Haro D, Duran M, Smeitink JA, Hegardt FG (1996) Aberrantly spliced mRNAs of the 3-hydroxy-3-methylglutaryl coenzyme A lyase (HL) gene with a donor splice-site point mutation produce hereditary HL deficiency. J Lipid Res 37:2420–2432PubMedGoogle Scholar
  11. 11.
    Pie J, Casals N, Casale CH, Buesa C, Mascaro C, Barcelo A, Rolland MO, Zabot T, Haro D, Eyskens F, Divry P, Hegardt FG (1997) A nonsense mutation in the 3-hydroxy-3-methylglutaryl-CoA lyase gene produces exon skipping in two patients of different origin with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. Biochem J 323(Pt 2):329–335PubMedGoogle Scholar
  12. 12.
    Casale CH, Casals N, Pie J, Zapater N, Perez-Cerda C, Merinero B, Martinez-Pardo M, Garcia-Penas JJ, Garcia-Gonzalez JM, Lama R, Poll-The BT, Smeitink JA, Wanders RJ, Ugarte M, Hegardt FG (1998) A nonsense mutation in the exon 2 of the 3-hydroxy-3-methylglutaryl coenzyme A lyase (HL) gene producing three mature mRNAs is the main cause of 3-hydroxy-3-methylglutaric aciduria in European Mediterranean patients. Arch Biochem Biophys 349:129–137PubMedCrossRefGoogle Scholar
  13. 13.
    Pie J, Lopez-Vinas E, Puisac B, Menao S, Pie A, Casale C, Ramos FJ, Hegardt FG, Gomez-Puertas P, Casals N (2007) Molecular genetics of HMG-CoA lyase deficiency. Mol Genet Metab 92(3):198–209PubMedCrossRefGoogle Scholar
  14. 14.
    Fagnani M, Barash Y, Ip JY, Misquitta C, Pan Q, Saltzman AL, Shai O, Lee L, Rozenhek A, Mohammad N, Willaime-Morawek S, Babak T, Zhang W, Hughes TR, van der Kooy D, Frey BJ, Blencowe BJ (2007) Functional coordination of alternative splicing in the mammalian central nervous system. Genome Biol 8:R108PubMedCrossRefGoogle Scholar
  15. 15.
    Vandenbroucke II, Vandesompele J, Paepe AD, Messiaen L (2001) Quantification of splice variants using real-time PCR. Nucl Acids Res 29:E68PubMedCrossRefGoogle Scholar
  16. 16.
    Menao S, Lopez-Vinas E, Mir C, Puisac B, Gratacos E, Arnedo M, Carrasco P, Moreno S, Ramos M, Gil MC, Pie A, Ribes A, Perez-Cerda C, Ugarte M, Clayton PT, Korman SH, Serra D, Asins G, Ramos FJ, Gomez-Puertas P, Hegardt FG, Casals N, Pie J (2009) Ten novel HMGCL mutations in 24 patients of different origin with 3-hydroxy-3-methyl-glutaric aciduria. Hum Mutat 30:E520–E529PubMedCrossRefGoogle Scholar
  17. 17.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  18. 18.
    Wanders RJ, Schutgens RB, Zoeters PH (1988) 3-Hydroxy-3-methylglutaryl-CoA lyase in human skin fibroblasts: study of its properties and deficient activity in 3-hydroxy-3-methylglutaric aciduria patients using a simple spectrophotometric method. Clin Chim Acta 171:95–101PubMedCrossRefGoogle Scholar
  19. 19.
    Parra G, Blanco E, Guigo R (2000) GeneID in Drosophila. Genome Res 10:511–515PubMedCrossRefGoogle Scholar
  20. 20.
    Fu Z, Runquist JA, Forouhar F, Hussain M, Hunt JF, Miziorko HM, Kim JJ (2006) Crystal structure of human 3-hydroxy-3-methylglutaryl-CoA Lyase: insights into catalysis and the molecular basis for hydroxymethylglutaric aciduria. J Biol Chem 281:7526–7532PubMedCrossRefGoogle Scholar
  21. 21.
    Shafqat N, Turnbull A, Zschocke J, Oppermann U, Yue WW (2010) Crystal structures of human HMG-CoA synthase isoforms provide insights into inherited ketogenesis disorders and inhibitor design. J Mol Biol 398:497–506PubMedCrossRefGoogle Scholar
  22. 22.
    Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20:374PubMedCrossRefGoogle Scholar
  23. 23.
    Casals N, Pie J, Casale CH, Zapater N, Ribes A, Castro-Gago M, Rodriguez-Segade S, Wanders RJ, Hegardt FG (1997) A two-base deletion in exon 6 of the 3-hydroxy-3-methylglutaryl coenzyme A lyase (HL) gene producing the skipping of exons 5 and 6 determines 3-hydroxy-3-methylglutaric aciduria. J Lipid Res 38:2303–2313PubMedGoogle Scholar
  24. 24.
    Muroi J, Yorifuji T, Uematsu A, Shigematsu Y, Onigata K, Maruyama H, Nobutoki T, Kitamura A, Nakahata T (2000) Molecular and clinical analysis of Japanese patients with 3-hydroxy-3-methylglutaryl CoA lyase (HL) deficiency. Hum Genet 107:320–326PubMedCrossRefGoogle Scholar
  25. 25.
    Hertel KJ (2008) Combinatorial control of exon recognition. J Biol Chem 283:1211–1215PubMedCrossRefGoogle Scholar
  26. 26.
    Liu HX, Zhang M, Krainer AR (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 12:1998–2012PubMedCrossRefGoogle Scholar
  27. 27.
    Blencowe BJ (2000) Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci 25:106–110PubMedCrossRefGoogle Scholar
  28. 28.
    Rickers A, Rininsland F, Osborne L, Reiss J (1994) Skipping of multiple CFTR exons is not a result of single exon omissions. Hum Genet 94:311–313PubMedCrossRefGoogle Scholar
  29. 29.
    Li J, Sheng Y, Tang PZ, Tsai-Morris CH, Dufau ML (2006) Tissue-cell- and species-specific expression of gonadotropin-regulated long chain acyl-CoA synthetase (GR-LACS) in gonads, adrenal and brain. Identification of novel forms in the brain. J Steroid Biochem Mol Biol 98:207–217PubMedCrossRefGoogle Scholar
  30. 30.
    Valentine CR (1998) The association of nonsense codons with exon skipping. Mutat Res 411:87–117PubMedCrossRefGoogle Scholar
  31. 31.
    Roberts JR, Mitchell GA, Miziorko HM (1996) Modeling of a mutation responsible for human 3-hydroxy-3-methylglutaryl-CoA lyase deficiency implicates histidine 233 as an active site residue. J Biol Chem 271:24604–24609PubMedCrossRefGoogle Scholar
  32. 32.
    Roberts JR, Miziorko HM (1997) Evidence supporting a role for histidine-235 in cation binding to human 3-hydroxy-3-methyglutaryl-CoA lyase. Biochemistry 36:7594–7600PubMedCrossRefGoogle Scholar
  33. 33.
    Lareau LF, Green RE, Bhatnagar RS, Brenner SE (2004) The evolving roles of alternative splicing. Curr Opin Struct Biol 14:273–282PubMedCrossRefGoogle Scholar
  34. 34.
    Mascaro C, Buesa C, Ortiz JA, Haro D, Hegardt FG (1995) Molecular cloning and tissue expression of human mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. Arch Biochem Biophys 317:385–390PubMedCrossRefGoogle Scholar
  35. 35.
    Puisac B, Arnedo M, Casale CH, Ribate MP, Castiella T, Ramos FJ, Ribes A, Perez-Cerda C, Casals N, Hegardt GH, Pie J (2010) Differential HMG-CoA lyase expression in human tissues provides clues about 3-hydroxy-3-methylglutaric aciduria. J Inherit Metab Dis 33:405–410PubMedCrossRefGoogle Scholar
  36. 36.
    Lareau LF, Brooks AN, Soergel DA, Meng Q, Brenner SE (2007) The coupling of alternative splicing and nonsense-mediated mRNA decay. Adv Exp Med Biol 623:190–211PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Beatriz Puisac
    • 1
  • Mónica Ramos
    • 1
  • María Arnedo
    • 1
  • Sebastián Menao
    • 1
  • María Concepción Gil-Rodríguez
    • 1
  • María Esperanza Teresa-Rodrigo
    • 1
  • Angeles Pié
    • 1
  • Juan Carlos de Karam
    • 1
  • Jan-Jaap Wesselink
    • 2
    • 3
  • Ignacio Giménez
    • 1
  • Feliciano J. Ramos
    • 1
  • Nuria Casals
    • 4
  • Paulino Gómez-Puertas
    • 3
  • Fausto G. Hegardt
    • 5
  • Juan Pié
    • 1
  1. 1.Unit of Clinical Genetics and Functional Genomics, Departments of Pharmacology—Physiology and Pediatrics, School of MedicineUniversity of ZaragozaZaragozaSpain
  2. 2.Biomol-Informatics SL. C/FaradayMadridSpain
  3. 3.Molecular Modelling Group, Center of Molecular Biology “Severo Ochoa” (CSIC-UAM)MadridSpain
  4. 4.Department of Biochemistry and Molecular Biology, School of Health SciencesInternational University of CataloniaBarcelonaSpain
  5. 5.Department of Biochemistry and Molecular Biology, School of PharmacyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations