Skip to main content
Log in

Characterization of splice variants of the genes encoding human mitochondrial HMG-CoA lyase and HMG-CoA synthase, the main enzymes of the ketogenesis pathway

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The genes HMGCS2 and HMGCL encode the two main enzymes for ketone-body synthesis, mitochondrial HMG-CoA synthase and HMG-CoA lyase. Here, we identify and describe possible splice variants of these genes in human tissues. We detected an alternative transcript of HMGCS2 carrying a deletion of exon 4, and two alternative transcripts of HMGCL with deletions of exons 5 and 6, and exons 5, 6 and 7, respectively. All splice variants maintained the reading frame. However, Western blot studies and overexpression measurements in eukaryotic or prokaryotic cell models did not reveal HL or mHS protein variants. Both genes showed a similar distribution of the inactive variants in different tissues. Surprisingly, the highest percentages were found in tissues where almost no ketone bodies are synthesized: heart, skeletal muscle and brain. Our results suggest that alternative splicing might coordinately block the two main enzymes of ketogenesis in specific human tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boukaftane Y, Duncan A, Wang S, Labuda D, Robert MF, Sarrazin J, Schappert K, Mitchell GA (1994) Human mitochondrial HMG CoA synthase: liver cDNA and partial genomic cloning, chromosome mapping to 1p12–p13, and possible role in vertebrate evolution. Genomics 23:552–559

    Article  PubMed  CAS  Google Scholar 

  2. Thumelin S, Forestier M, Girard J, Pegorier JP (1993) Developmental changes in mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression in rat liver, intestine and kidney. Biochem J 292(Pt 2):493–496

    PubMed  CAS  Google Scholar 

  3. Royo T, Pedragosa MJ, Ayte J, Gil-Gomez G, Vilaro S, Hegardt FG (1993) Testis and ovary express the gene for the ketogenic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. J Lipid Res 34:1636

    PubMed  CAS  Google Scholar 

  4. Wang S, Nadeau JH, Duncan A, Robert MF, Fontaine G, Schappert K, Johnson KR, Zietkiewicz E, Hruz P, Miziorko H, Mitchell GA (1993) 3-Hydroxy-3-methylglutaryl coenzyme A lyase (HL): cloning and characterization of a mouse liver HL cDNA and subchromosomal mapping of the human and mouse HL genes. Mamm Genome 4:382–387

    Article  PubMed  CAS  Google Scholar 

  5. Clinkenbeard KD, Reed WD, Mooney RA, Lane MD (1975) Intracellular localization of the 3-hydroxy-3-methylglutaryl coenzme A cycle enzymes in liver. Separate cytoplasmic and mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A generating systems for cholesterogenesis and ketogenesis. J Biol Chem 250:3108–3116

    PubMed  CAS  Google Scholar 

  6. Robinson AM, Williamson DH (1980) Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev 60:143–187

    PubMed  CAS  Google Scholar 

  7. Hegardt FG (1999) Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis. Biochem J 338(Pt 3):569–582

    Article  PubMed  CAS  Google Scholar 

  8. Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6:386–398

    Article  PubMed  CAS  Google Scholar 

  9. Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126:7–47

    Article  Google Scholar 

  10. Buesa C, Pie J, Barcelo A, Casals N, Mascaro C, Casale CH, Haro D, Duran M, Smeitink JA, Hegardt FG (1996) Aberrantly spliced mRNAs of the 3-hydroxy-3-methylglutaryl coenzyme A lyase (HL) gene with a donor splice-site point mutation produce hereditary HL deficiency. J Lipid Res 37:2420–2432

    PubMed  CAS  Google Scholar 

  11. Pie J, Casals N, Casale CH, Buesa C, Mascaro C, Barcelo A, Rolland MO, Zabot T, Haro D, Eyskens F, Divry P, Hegardt FG (1997) A nonsense mutation in the 3-hydroxy-3-methylglutaryl-CoA lyase gene produces exon skipping in two patients of different origin with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. Biochem J 323(Pt 2):329–335

    PubMed  CAS  Google Scholar 

  12. Casale CH, Casals N, Pie J, Zapater N, Perez-Cerda C, Merinero B, Martinez-Pardo M, Garcia-Penas JJ, Garcia-Gonzalez JM, Lama R, Poll-The BT, Smeitink JA, Wanders RJ, Ugarte M, Hegardt FG (1998) A nonsense mutation in the exon 2 of the 3-hydroxy-3-methylglutaryl coenzyme A lyase (HL) gene producing three mature mRNAs is the main cause of 3-hydroxy-3-methylglutaric aciduria in European Mediterranean patients. Arch Biochem Biophys 349:129–137

    Article  PubMed  CAS  Google Scholar 

  13. Pie J, Lopez-Vinas E, Puisac B, Menao S, Pie A, Casale C, Ramos FJ, Hegardt FG, Gomez-Puertas P, Casals N (2007) Molecular genetics of HMG-CoA lyase deficiency. Mol Genet Metab 92(3):198–209

    Article  PubMed  CAS  Google Scholar 

  14. Fagnani M, Barash Y, Ip JY, Misquitta C, Pan Q, Saltzman AL, Shai O, Lee L, Rozenhek A, Mohammad N, Willaime-Morawek S, Babak T, Zhang W, Hughes TR, van der Kooy D, Frey BJ, Blencowe BJ (2007) Functional coordination of alternative splicing in the mammalian central nervous system. Genome Biol 8:R108

    Article  PubMed  Google Scholar 

  15. Vandenbroucke II, Vandesompele J, Paepe AD, Messiaen L (2001) Quantification of splice variants using real-time PCR. Nucl Acids Res 29:E68

    Article  PubMed  CAS  Google Scholar 

  16. Menao S, Lopez-Vinas E, Mir C, Puisac B, Gratacos E, Arnedo M, Carrasco P, Moreno S, Ramos M, Gil MC, Pie A, Ribes A, Perez-Cerda C, Ugarte M, Clayton PT, Korman SH, Serra D, Asins G, Ramos FJ, Gomez-Puertas P, Hegardt FG, Casals N, Pie J (2009) Ten novel HMGCL mutations in 24 patients of different origin with 3-hydroxy-3-methyl-glutaric aciduria. Hum Mutat 30:E520–E529

    Article  PubMed  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  18. Wanders RJ, Schutgens RB, Zoeters PH (1988) 3-Hydroxy-3-methylglutaryl-CoA lyase in human skin fibroblasts: study of its properties and deficient activity in 3-hydroxy-3-methylglutaric aciduria patients using a simple spectrophotometric method. Clin Chim Acta 171:95–101

    Article  PubMed  CAS  Google Scholar 

  19. Parra G, Blanco E, Guigo R (2000) GeneID in Drosophila. Genome Res 10:511–515

    Article  PubMed  CAS  Google Scholar 

  20. Fu Z, Runquist JA, Forouhar F, Hussain M, Hunt JF, Miziorko HM, Kim JJ (2006) Crystal structure of human 3-hydroxy-3-methylglutaryl-CoA Lyase: insights into catalysis and the molecular basis for hydroxymethylglutaric aciduria. J Biol Chem 281:7526–7532

    Article  PubMed  CAS  Google Scholar 

  21. Shafqat N, Turnbull A, Zschocke J, Oppermann U, Yue WW (2010) Crystal structures of human HMG-CoA synthase isoforms provide insights into inherited ketogenesis disorders and inhibitor design. J Mol Biol 398:497–506

    Article  PubMed  CAS  Google Scholar 

  22. Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20:374

    Article  PubMed  CAS  Google Scholar 

  23. Casals N, Pie J, Casale CH, Zapater N, Ribes A, Castro-Gago M, Rodriguez-Segade S, Wanders RJ, Hegardt FG (1997) A two-base deletion in exon 6 of the 3-hydroxy-3-methylglutaryl coenzyme A lyase (HL) gene producing the skipping of exons 5 and 6 determines 3-hydroxy-3-methylglutaric aciduria. J Lipid Res 38:2303–2313

    PubMed  CAS  Google Scholar 

  24. Muroi J, Yorifuji T, Uematsu A, Shigematsu Y, Onigata K, Maruyama H, Nobutoki T, Kitamura A, Nakahata T (2000) Molecular and clinical analysis of Japanese patients with 3-hydroxy-3-methylglutaryl CoA lyase (HL) deficiency. Hum Genet 107:320–326

    Article  PubMed  CAS  Google Scholar 

  25. Hertel KJ (2008) Combinatorial control of exon recognition. J Biol Chem 283:1211–1215

    Article  PubMed  CAS  Google Scholar 

  26. Liu HX, Zhang M, Krainer AR (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 12:1998–2012

    Article  PubMed  CAS  Google Scholar 

  27. Blencowe BJ (2000) Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci 25:106–110

    Article  PubMed  CAS  Google Scholar 

  28. Rickers A, Rininsland F, Osborne L, Reiss J (1994) Skipping of multiple CFTR exons is not a result of single exon omissions. Hum Genet 94:311–313

    Article  PubMed  CAS  Google Scholar 

  29. Li J, Sheng Y, Tang PZ, Tsai-Morris CH, Dufau ML (2006) Tissue-cell- and species-specific expression of gonadotropin-regulated long chain acyl-CoA synthetase (GR-LACS) in gonads, adrenal and brain. Identification of novel forms in the brain. J Steroid Biochem Mol Biol 98:207–217

    Article  PubMed  CAS  Google Scholar 

  30. Valentine CR (1998) The association of nonsense codons with exon skipping. Mutat Res 411:87–117

    Article  PubMed  Google Scholar 

  31. Roberts JR, Mitchell GA, Miziorko HM (1996) Modeling of a mutation responsible for human 3-hydroxy-3-methylglutaryl-CoA lyase deficiency implicates histidine 233 as an active site residue. J Biol Chem 271:24604–24609

    Article  PubMed  CAS  Google Scholar 

  32. Roberts JR, Miziorko HM (1997) Evidence supporting a role for histidine-235 in cation binding to human 3-hydroxy-3-methyglutaryl-CoA lyase. Biochemistry 36:7594–7600

    Article  PubMed  CAS  Google Scholar 

  33. Lareau LF, Green RE, Bhatnagar RS, Brenner SE (2004) The evolving roles of alternative splicing. Curr Opin Struct Biol 14:273–282

    Article  PubMed  CAS  Google Scholar 

  34. Mascaro C, Buesa C, Ortiz JA, Haro D, Hegardt FG (1995) Molecular cloning and tissue expression of human mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. Arch Biochem Biophys 317:385–390

    Article  PubMed  CAS  Google Scholar 

  35. Puisac B, Arnedo M, Casale CH, Ribate MP, Castiella T, Ramos FJ, Ribes A, Perez-Cerda C, Casals N, Hegardt GH, Pie J (2010) Differential HMG-CoA lyase expression in human tissues provides clues about 3-hydroxy-3-methylglutaric aciduria. J Inherit Metab Dis 33:405–410

    Article  PubMed  CAS  Google Scholar 

  36. Lareau LF, Brooks AN, Soergel DA, Meng Q, Brenner SE (2007) The coupling of alternative splicing and nonsense-mediated mRNA decay. Adv Exp Med Biol 623:190–211

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from: Diputación General de Aragón (Ref.# Grupo Consolidado B20); University of Zaragoza UZ2007-BIO-13); Spanish Ministry of Education and Science (Ref.# SAF2004-06843-C03), Instituto de Salud Carlos III (CIBER Fisiopatología de la Obesidad y Nutrición), and European Union (FP7-223431 “Divinocell” project; to P.G.-P.). Financial support from the “Fundación Ramón Areces” to CBMSO is also acknowledged. J-J.W. was a recipient of a Torres-Quevedo fellowship financed by Ministerio de Ciencia e Innovación and M.E.T.R. from University of Zaragoza (PIF-UZ-2009-BIO-02). We also thank “Centro de Cálculo Científico” (CCCUAM) for computational support. Work at Biomol-Informatics SL was partially financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pié.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puisac, B., Ramos, M., Arnedo, M. et al. Characterization of splice variants of the genes encoding human mitochondrial HMG-CoA lyase and HMG-CoA synthase, the main enzymes of the ketogenesis pathway. Mol Biol Rep 39, 4777–4785 (2012). https://doi.org/10.1007/s11033-011-1270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1270-8

Keywords

Navigation