Skip to main content
Log in

Parental genome composition and genetic classifications of derivatives from intergeneric crosses of Festuca mairei and Lolium perenne

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Intergeneric hybridization between Festuca and Lolium has been a long-term goal of forage and turfgrass breeders to generate improved cultivars by combining stress tolerance of Festuca and rapid establishment of Lolium. However, wide-distance hybridizations usually result in the wild genome being eliminated from the hybrid due to incomplete chromosome pairing and crossovers. In this study, random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers were used to detect the parental genome composition of F1 hybrids and backcross, generated from crosses between Festuca mairei St. Yves (Fm) and Lolium perenne L. (Lp). Each of the hybrids exhibited integration of Fm and Lp genomes with varying levels of Fm/Lp genome ratios. However, cluster and principle component analyses of the progeny consistently revealed four groups depending on the amount of genome introgression from both parents. The parental genome composition and classifications of intergeneric progeny would be useful for breeding material selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

FA:

Festuca arundinacea

Fm:

Festuca mairei

FDR:

First division restitution

FISH:

Fluorescence in situ hybridization

GISH:

Genomic in situ hybridization

LGs:

Linkage groups

Lp:

Lolium perenne

RAPD:

Random amplified polymorphic DNA

SAHN:

Sequential agglomerative hierarchical nested

SSR:

Simple sequence repeats

UPGMA:

Unweighted pair-group method with arithmetic mean

References

  • Bemabdelmouna A, Peltier D, Humbert C, Abirached-Darmency M (1999) Southern and fluorescent in situ hybridization detect three RAPD-generated PCR products useful as introgression markers in Petunia. Theor Appl Genet 98:10–17. doi:10.1007/s001220051034

    Article  Google Scholar 

  • Borill M, Tyler B, Lloyd-Jones M (1971) Studies in Festuca. 1. A chromosome atlas of bovinae and scariose. Cytologia (Tokyo) 36:1–14

    Google Scholar 

  • Buckner RC (1965) Fertility of annual ryegrass tall fescue amphiploid and their derivatives. Crop Sci 5:395–397

    Google Scholar 

  • Buckner RC, Burrus PB, Eizenga GC (1985) Genetic, morphological, and agronomic characteristics of LoliumFestuca amphiploids. Crop Sci 25:757–761

    Google Scholar 

  • Cao M, Sleper DA (2001) Use of genome-specific repetitive DNA sequences to monitor chromatin introgression from Festuca mairei into Lolium perenne. Theor Appl Genet 103:248–253. doi:10.1007/s001220100564

    Article  CAS  Google Scholar 

  • Cao M, Chen WP, Liu DJ (1994) Cytogenetics studies of intergeneric hybrid F1 and amphiploid between Lolium multiflorum Lam. and Festuca arundinacea var. glaucescens Boiss. Sci Agric Sinica 27(5):69–76

    Google Scholar 

  • Cao M, Sleper DA, Dong F, Jiang J (2000) Genomic in situ hybridization (GISH) reveals high chromosome pairing affinity between Lolium perenne and Festuca mairei. Genome 43:398–403. doi:10.1139/gen-43-2-398

    Article  PubMed  CAS  Google Scholar 

  • Cao M, Bughrara SS, Sleper DA (2003) Cytogenetic analysis of Festuca species and amphiploids between Festuca mairei and Lolium perenne. Crop Sci 43:1659–1662

    Google Scholar 

  • Charmet G, Ravel C, Balfourier F (1997) Phylogenetic analysis in the Lolium–Festuca complex using molecular markers and ITS rDNA. Theor Appl Genet 94:1038–1046. doi:10.1007/s001220050512

    Article  CAS  Google Scholar 

  • Chen C (1996) Molecular genome characterization and introgression in Lolium perenne and Festuca species. Ph.D. Dissertation, University of Missouri–Columbia

  • Chen C, Sleper DA (1999) FISH and RFLP marker-assisted introgression of Festuca mairei chromosome into Lolium perenne. Crop Sci 39:1676–1679

    CAS  Google Scholar 

  • Chen C, Sleper DA, West CP (1995) RFLP and cytogenetic analyses of hybrids between Festuca mairei and Lolium perenne. Crop Sci 35:720–725

    Google Scholar 

  • Chen C, Sleper DA, Chao S, Johal GS, West CP (1997) RFLP detection of 2n pollen formation by first and second division restitution in Perennial ryegrass. Crop Sci 37:76–80

    Google Scholar 

  • Dice LR (1945) Measurement of the amount of ecological association between species. Ecology 26:297–302. doi:10.2307/1932409

    Article  Google Scholar 

  • Gupta PK (2002) Triticeae EST–SSR Coordination. http://wheat.pw.usda.gov/ ITMI/2002/EST–SSR/. Accessed 09 June 2004

  • Humphreys M, Thomas H, Harper J, Morgan G, James A, Ghamari A, Thomas H (1997) Dissecting drought- and cold-tolerance traits in the Lolium–Festuca complex by introgression mapping. New Phytol 137:55–60. doi:10.1046/j.1469-8137.1997.00832.x

    Article  Google Scholar 

  • Humphreys J, Harper JA, Armstead IP, Humphreys MW (2005) Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var. glaucescens into Lolium multiflorum. Theor Appl Genet 110:579–597. doi:10.1007/s00122-004-1879-2

    Article  PubMed  CAS  Google Scholar 

  • Jauhar PP (1993) Cytogenetics of the Festuca–Lolium complex: relevance to breeding. Springer, Berlin

    Google Scholar 

  • Jones ES, Dupal MP, Kölliker R, Drayton MC, Forster JW (2001) Development and characterization of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102:405–415. doi:10.1007/s001220051661

    Article  CAS  Google Scholar 

  • Kopecký D, Loureiro J, Zwierzykowski Z, Ghesquière M, Doležel J (2006) Genome constitution and evolution in Lolium × Festuca hybrid cultivars (Festulolium). Theor Appl Genet 113:731–742. doi:10.1007/s00122-006-0341-z

    Article  PubMed  Google Scholar 

  • Kubik C, Sawkins M, Meyer W, Gaut BS (2001) Genetic diversity in seven perennial ryegrass (Lolium perenne) cultivars based on SSR markers. Crop Sci 45:1565–1571

    Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Pašakinskiene I, Jones N (2005) A decade of ‘chromosome painting’ in Lolium and Festuca. Cytogenet Genome Res 109:393–399. doi:10.1159/000082425

    Article  PubMed  Google Scholar 

  • Pavlicek A, Hrda S, Flegr J (1999) FreeTree—freeware program for construction of phylogenetic trees on the basis of distance data and for bootstrap/jackknife analysis of the trees robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biol 45:97–99

    CAS  Google Scholar 

  • Prakash NS, Combes MC, Somanna N, Lashermes P (2002) AFLP analysis of introgression in coffee cultivars (Coffea arabica L.) derived from a natural interspecific hybrid. Euphytica 124:265–271. doi:10.1023/A:1015736220358

    Article  Google Scholar 

  • Randall DD, Nelson CJ, Sleper DA, Miles CD, Crane CF, Krueger RW, Wong JH, Poskuta JW (1985) Photosynthesis in allopolyploid Festuca. In: Ludden PW, Burris JE (eds) Nitrogen fixation and CO2 metabolism. Elsevier Publishing Company, New York, pp 409–418

    Google Scholar 

  • Riewe ME, Mondart CL (1985) The Ryegrasses. In: Heath ME, Barnes RF, Metcalfe DS (eds) Forages: the science of grassland agriculture, 4th edn. Iowa State Univ Press, Ames, pp 241–246

    Google Scholar 

  • Saha MC, Mian RA, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST–SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791. doi:10.1007/s00122-004-1681-1

    Article  PubMed  Google Scholar 

  • Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726. doi:10.1007/s001220051344

    Article  CAS  Google Scholar 

  • Sharma H, Ohm H, Goulart L, Lister R, Appels R (1995) Introgression and characterization of barley yellow virus resistance from Thinopyrum intermedium into wheat. Genome 38:406–413. doi:10.1139/g95-052

    Article  PubMed  CAS  Google Scholar 

  • Siffelova G, Pavelkoca M, Klabouchova A, Wiesner I, Nasinec V, Nasinec I (1997) RAPD fingerprinting of diploid Lolium perenne × hexaploid Festuca arundinacea hybrid genomes. Biol Plant 40:183–192. doi:10.1023/A:1001056201052

    Article  CAS  Google Scholar 

  • Wang JP, Bughrara SS (2008) Evaluation of drought tolerance for Atlas fescue, perennial ryegrass, and their progeny. Euphytica 164:113–122

    Article  Google Scholar 

  • Wang JP, Bughrara SS, Nelson CJ (2008) Morpho–physiological responses of several fescue grasses to drought stress. HortScience 43:776–783

    Google Scholar 

  • Warnke SE, Barker RE, Jung G, Sim SC, Mian MAR, Saha MC, Brilman LA, Dupal MP, Forster JW (2004) Genetic linkage mapping of an annual × perennial ryegrass population. Theor Appl Genet 109:294–304. doi:10.1007/s00122-004-1647-3

    Article  PubMed  CAS  Google Scholar 

  • Zwierzykowski Z (2004) Amphiploid and introgression breeding within the Lolium–Festuca complex-achievements and perspectives. In: Yamada T, Takamizo T (eds) Development of a novel grass with environmental stress and high forage quality through intergeneric hybridization between Lolium and Festuca. NARO, Tsukuba, pp 17–29

    Google Scholar 

  • Zwierzykowski Z, Tayyar R, Brunell M, Lukaszewski AJ (1998) Genome recombination in intergeneric hybrids between tetraploid Festuca pratensis and Lolium multiflorum. J Hered 89:324–328. doi:10.1093/jhered/89.4.324

    Article  Google Scholar 

  • Zwierzykowski Z, Kosmala A, Zwierzykowska E, Jones N, Jokm W, Bocianowski J (2006) Genome balance in six successive generations of the allotetraploid Festuca pratensis and Lolium perenne. Theor Appl Genet 113:539–547. doi:10.1007/s00122-006-0322-2

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleiman S. Bughrara.

Electronic supplementary material

Below is the link to the electronic supplementary material

(DOC 77 kb)

(DOC 55 kb)

(DOC 64 kb)

(PDF 882 kb)

(DOC 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.P., Bughrara, S.S., Mian, R.M.A. et al. Parental genome composition and genetic classifications of derivatives from intergeneric crosses of Festuca mairei and Lolium perenne . Mol Breeding 23, 299–309 (2009). https://doi.org/10.1007/s11032-008-9236-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9236-9

Keywords

Navigation