Skip to main content
Log in

Assessing the Effects of Porosity on the Bending, Buckling, and Vibrations of Functionally Graded Beams Resting on an Elastic Foundation by Using a New Refined Quasi-3D Theory

  • Published:
Mechanics of Composite Materials Aims and scope

A new refined quasi-3D shear deformation theory for bending, buckling, and free vibration analyses of a functionally graded porous beam resting on an elastic foundation is presented. It involves only three unknown functions, against four or more ones in other shear and normal deformation theories. The stretching effect is naturally taken into account by this theory because of its 3D nature. The mechanical characteristics of the beam are assumed to be graded in the thickness direction according to two different porosity distributions. The differential equation system governing the bending, buckling, and free vibration behavior of porous beams is derived based on the Hamilton principle. The problem is then solved using the Navier solution for a simply supported beam. The accuracy of the present solution is demonstrated by comparing it with other closed-form solutions available in the literature. A detailed parametric study is presented to show the influence of porosity distribution on the general behavior of FG porous beams on an elastic foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. M. Aydogdu and V. Taskin, “Free vibration analysis of functionally graded beams with simply supported edges,” Mat. Des., 28, 1651-1656 (2007).

    Article  Google Scholar 

  2. K. K. Pradhan and S. Chakraverty, “Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method,” Composites: Part B, 51,175-184 (2013).

    Article  Google Scholar 

  3. Alshorbagy, E. Amal, M. A Eltaher, and F. Mahmoud, “Free vibration characteristics of a functionally graded beam by finite element method,” Appl. Math. Model., 35, No.1, 412-425 (2011).

    Article  Google Scholar 

  4. A. Shahba, R. Attarnejad, and S. Hajilar, “Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams,” Shock and Vibration, 18, No. 5, 683-696 (2011).

    Article  Google Scholar 

  5. Trung-Kien Nguyen, Ba-Duy Nguyen, “A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams,” Sandw. Struct. Mater., 17, No. 6, 613-631 (2015).

    Article  CAS  Google Scholar 

  6. T.-K. Nguyen, T. P. Vo, and H.-T. Thai, “Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory,” Composites: Part B, 55, 147-157 (2013).

    Article  Google Scholar 

  7. S. C. Mohanty, R. R. Dash, and T.,Rout, “Parametric instability of a functionally graded Timoshenko beam on Winklers foundation,” Nucl. Eng. Des., 241, 2698-2715 (2011).

  8. H. Yaghoobi and P. Yaghoobi, “Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: An analytical approach,” Meccanica, 48, No.8, 2019-2035 (2013).

    Article  Google Scholar 

  9. Xuan Wang and Shirong Li, “Free vibration analysis of functionally graded material beams based on Levinson beam theory,” Appl. Math. Mech. -Engl. Ed., 37, No.7, 861-878 (2016).

    Article  Google Scholar 

  10. A. Tounsi, M. S. A. Houari, S. Benyoucef, and E. A. Adda Bedia, “A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates,” Aerosp. Sci. Technol., 24, No.1, 209-220 (2013).

    Article  Google Scholar 

  11. B. Bouderba, M. S. A. Houari, and A. Tounsi, “Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations,” Steel Compos. Struct. Int. J., 14, No.1, 85-104 (2013).

    Article  Google Scholar 

  12. R. Bachir Bouiadjra, E. A. Adda Bedia, and A. Tounsi, “Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory,” Struct. Eng. Mech. Int. J., 48, No.4, 547-567 (2013).

    Article  Google Scholar 

  13. H. Saidi, M. S. A. Houari, A. Tounsi, and E. A. Adda Bedia, “Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory,” Steel Compos. Struct. Int. J., 15, No.2, 221-245 (2013).

    Article  Google Scholar 

  14. H. Hebali, A. Tounsi, M. S. A. Houari, A. Bessaim, and E. A. Adda Bedia, “New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates,” J. Eng. Mech., ASCE, 140, No.2, 374-383 (2014).

    Article  Google Scholar 

  15. A. Fekrar, M. S. A. Houari, A. Tounsi, and S. R. Mahmoud, “A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates,” Meccanica, 49, No.4, 795-810 (2014.

    Article  Google Scholar 

  16. Z. Belabed, M. S. A. Houari, A. Tounsi, S. R. Mahmoud, and O. Anwar Bég, “An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates,” Composites: Part B, 60, 274-283 (2014).

    Article  Google Scholar 

  17. M. Ait Amar Meziane, H. H. Abdelaziz, and A. Tounsi, “An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions,” J. Sandw. Struct. Mater., 16, No.3, 293-318 (2014).

    Article  Google Scholar 

  18. M. Zidi, A. Tounsi, M. S. A. Houari, E. A. Adda Bedia, and O. Anwar Bég, “Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory,” Aerosp. Sci. Technol., 34, 24-34 (2014).

    Article  Google Scholar 

  19. A. A. Bousahla, M. S. A. Houari, A. Tounsi, and E. A. Adda Bedia, “A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates,” Int. J. Comput. Method., 11, No.6, 1350082 (2014).

    Article  Google Scholar 

  20. S. Ait Yahia, H. Ait Atmane, M. S. A. Houari, and A. Tounsi, “Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories,” Struct. Eng. Mech, Int. J., 53, No.6, 1143-1165 (2015).

    Article  Google Scholar 

  21. A. Hamidi, M. S. A. Houari, S. R Mahmoud, and A. Tounsi, “A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates,” Steel Compos. Struct. Int. J., 18, No.1, 235-253 (2015).

    Article  Google Scholar 

  22. A. Attia, A. Tounsi, E. A. Adda Bedia, and S. R. Mahmoud, “Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories,” Steel Compos. Struct, Int. J., 18, No.1, 187-212 (2015).

    Article  Google Scholar 

  23. F. Z. Taibi, S. Benyoucef, A. Tounsi, R. Bachir Bouiadjra, E. A. Adda Bedia, and S. R. Mahmoud, “A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations,” J. Sandw. Struct. Mater., 17, No.2, 99129 (2015).

    Article  Google Scholar 

  24. R. Meksi, S. Benyoucef, A. Mahmoudi, A. Tounsi, E. A .Adda Bedia, and S. R. Mahmoud, “An analytical solution for bending, buckling and vibration responses of FGM sandwich plates,” J. Sandw. Struct. Mater., 21, No.2, 727-757 (2019).

  25. A. Mahmoudi, S. Benyoucef, A. Tounsi, A. Benachour, E. A. Adda Bedia, and S. R. Mahmoud, “A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations,” J. Sandw. Struct. Mater, In Press (2017).

  26. R. Bennai, H. Ait Atmane, and A. Tounsi, “A new higher-order shear and normal deformation theory for functionally graded sandwich beams,” Steel Compos. Struct., Int. J., 19, No.3, 521-546 (2015).

    Article  Google Scholar 

  27. H. Yaghoobi and A. Fereidoon, “Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory,” Composites: Part B, 62, 54-64 (2014).

    Article  Google Scholar 

  28. M. Bourada, A. Kaci, M. S. A. Houari, and A. Tounsi, “A new simple shear and normal deformations theory for functionally graded beams,” Steel Compos. Struct., Int. J., 18, No.2, 409-423 (2015).

    Article  Google Scholar 

  29. H. T. Thai and T. P. Vo, “Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories,” Int. J. Mech. Sci., 62, 57-66 (2012).

    Article  Google Scholar 

  30. K. K Pradhan and S. Chakraverty, “Effects of different shear deformation theories on free vibration of functionally graded beams”, Int. J. Mech. Sci., 82, 149-160 (2014).

    Article  Google Scholar 

  31. J. Zhu, Z. Lai, Z. Yin, J. Jeon, and S. Lee, “Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy,” Mater. Chem. Phys., 68, 130-135 (2001).

    Article  CAS  Google Scholar 

  32. D. Chen, J. Yang, and S. Kitipornchai, “Elastic buckling and static bending of shear deformable functionally graded porous beam,” Compos. Struct., 133, 54-61 (2015).

    Article  Google Scholar 

  33. N. Wattanasakulpong and V. Ungbhakorn, “Free vibration analysis of functionally graded beams with general elastically end constraints by DTM,” World J. of Mech., 2, No.6, 297 (2012).

    Article  Google Scholar 

  34. H. Ait Atmane, A. Tounsi, F. Bernard, and S. R. Mahmoud, “A computational shear displacement model for vibrational analysis of functionally graded beams with porosities,” Steel Compos. Struct., Int. J., 19, No.2, 369-384 (2015).

    Article  Google Scholar 

  35. F. Mouaici, S. Benyoucef, H. Ait Atmane, and A. Tounsi, “Effect of porosity on vibrational characteristics of nonhomogeneous plates using hyperbolic shear deformation theory,” Wind Struct., Int. J., 22, No.4, 429-454 (2016).

    Article  Google Scholar 

  36. L. J. Gibson and M. Ashby, “The mechanics of three-dimensional cellular materials. Proce R Soc,” London A: Math Phys. Eng. Sci, 382, No.1782, 43-59 (1982).

    Article  CAS  Google Scholar 

  37. J. Choi and R. Lakes, “Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio,” Int. J. Mech. Sci, 37, No.1, 51-9 (1995).

    Article  Google Scholar 

  38. J. Ying, C. F. Lu, and W. Q. Chen, “Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations,” Compos. Struct. 84, 209-219 (2008).

    Article  Google Scholar 

  39. H. Ait Atmane, A. Tounsi, F. Bernard, “Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations,” Int. J. Mech. Mater. Des., 13, No.1, 71-84 (2017).

    Article  Google Scholar 

  40. W. Q. Chen, C. F. Lu, and Z. G. Bian, “A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation,” Appl. Math. Model. 28, 877-890 (2004).

    Article  Google Scholar 

  41. R. Venkateswara and R. Kanaka, “Elegant and accurate closed form solutions to predict vibration and buckling behaviour of slender beams on Pasternak foundation,” Indian J. Eng. Mater. Sci., 09, 98-102 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Benyoucef.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 55, No. 2, pp. 313-330, March-April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahsi, B., Bouiadjra, R.B., Mahmoudi, A. et al. Assessing the Effects of Porosity on the Bending, Buckling, and Vibrations of Functionally Graded Beams Resting on an Elastic Foundation by Using a New Refined Quasi-3D Theory. Mech Compos Mater 55, 219–230 (2019). https://doi.org/10.1007/s11029-019-09805-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09805-0

Keywords

Navigation