Skip to main content
Log in

Some qualitative results for a modification of the Green–Lindsay thermoelasticity

  • Brief Notes and Discussions
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this short note we consider a recent modification of the Green–Lindsay thermoelastic theory proposed at Yu et al. (Meccanica 53:2543–2554, 2018). We consider a functional defined on the solutions of the problem. It allows us to obtain the continuous dependence of the solutions with respect to the initial conditions and to the supply terms, the time exponential decay of solutions and an alternative of Phragmén–Lindelöf type for the spatial behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here \(\theta \) is the relative temperature and \(q_i\) is the heat flux vector

  2. It is worth recalling that the spatial stability of solutions for partial differential equations is related with the well-known Saint-Venant’s principle in thermomechanics [19, 20].

  3. It is worth noting that the best value for the \(K_{\omega }\) involves the study of a very cumbersome system of nonlinear equations.

References

  1. Bofill F, Quintanilla R (1995) Some qualitative results for the theory of thermo-microstretch elastic solids. Int J Eng Sci 33:2115–2125

    Article  MathSciNet  Google Scholar 

  2. Cattaneo C (1948) Sulla conduzioini del calore. Atti Semin Mat Fis Univ Modena 3:83–101

    MATH  Google Scholar 

  3. Chirita S (1995) Saint-Venant’s principle in linear elasticity. J Thermal Stress 18:485–496

    Article  Google Scholar 

  4. Flavin JN, Knops RJ, Payne LE (1989) Decay estimates for the constrained elastic cylinder of variable cross-section. Q Appl Math 47:325–350

    Article  MathSciNet  Google Scholar 

  5. Green AE, Lindsay K (1972) Thermoelasticity. J Elast 2:1–7

    Article  Google Scholar 

  6. Green AE, Naghdi PM (1992) On undamped heat waves in elastic solids. J Thermal Stress 15:252–264

    Article  ADS  MathSciNet  Google Scholar 

  7. Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31:189–208

    Article  MathSciNet  Google Scholar 

  8. Horgan CO, Quintanilla R (2005) Spatial behaviour of solutions of the dual-phase-lag heat equation. Math Methods Appl Sci 28:43–57

    Article  MathSciNet  Google Scholar 

  9. Iesan D, Quintanilla R (2000) On a theory of thermoelasticity with microtemperatures. J Thermal Stress 23:199–216

    Article  MathSciNet  Google Scholar 

  10. Jun Yu Y, Xue Z-N, Tian X-G (2018) A modified Green–Lindsay thermoelastidcity with strain rate to eliminate discontinuity. Meccanica 53:2543–2554

    Article  MathSciNet  Google Scholar 

  11. Leseduarte MC, Magaña A, Quintanilla R (2010) On the time decay of solutions in porous-thermo-elasticity of type II. Discrete Contin Dyn Syst Ser B 13:375–391

    Article  MathSciNet  Google Scholar 

  12. Leseduarte MC, Quintanilla R (2014) On the spatial behavior in type III thermoelastodynamics. J Appl Math Phys (ZAMP) 65:165–177

    Article  MathSciNet  Google Scholar 

  13. Leseduarte MC, Quintanilla R (2018) Spatial behavior in high order partial differential equations. Math Methods Appl Sci 41:2480–2493

    MathSciNet  MATH  Google Scholar 

  14. Lord H, Shulman Y (1967) A generalized dynamic theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  ADS  Google Scholar 

  15. Navarro CB, Quintanilla R (1984) On existence and uniquenes in incremental thermoelasticity. J Appl Math Phys (ZAMP) 35:206–215

    Article  Google Scholar 

  16. Quintanilla R (2001) End effects in thermoelasticity. Math Methods Appl Sci 24:93–102

    Article  MathSciNet  Google Scholar 

  17. Quintanilla R, Racke R (2003) Stability in thermoelasticity of type III. Discrete Contin Dyn Syst B 3:383–400

    Article  MathSciNet  Google Scholar 

  18. Quintanilla R, Straughan B (2000) Growth and uniqueness in thermoelasticity. Proc R Soc Lond Ser A 456:1419–1429

    Article  ADS  MathSciNet  Google Scholar 

  19. Saint-Venant AJCB (1853) Mémoire sur la torsion des prismes. In: Mémoires présentés pour divers Savants a Ácadémie des Sciences de l’Institut Impérial de France, vol 14, pp 233–560

  20. Saint-Venant AJCB (1856) Mémoire sur la flexion des prismes. J Math Pures Appl 1(Ser. 2):89–189

    Google Scholar 

Download references

Acknowledgements

The investigation reported in this paper is supported by the project project “Análisis Matemático de Problemas de la Termomecánica” (MTM2016-74934-P)(AEI/FEDER, UE) of the Spanish Ministry of Economy and Competitiveness. The author thanks to the anonymous referee his useful suggestions concerning this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Quintanilla.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintanilla, R. Some qualitative results for a modification of the Green–Lindsay thermoelasticity. Meccanica 53, 3607–3613 (2018). https://doi.org/10.1007/s11012-018-0889-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0889-0

Keywords

Navigation