Skip to main content

Advertisement

Log in

Smad2 protects against TGF-β1/Smad3-mediated collagen synthesis in human hepatic stellate cells during hepatic fibrosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

With structural similarity but functional diversity, Smad2 and Smad3 interact with each other to mediate transforming growth factor-β (TGF-β)-triggered signaling transduction. However, in the hepatic fibrosis, the detailed roles of R-Smads, and interaction between Smad2 and Smad3 are still undefined. In this setting, we established a rat model of CCl4-induced hepatic fibrosis in vivo and TGF-β1-treated hepatic stellate cell model in vitro to detect whether Smad2 and Smad3 play distinct roles in mediating liver fibrogenesis. Results indicated that both phosphorylation of Smad2 and Smad3 were detected in the hepatic stellate cells of liver fibrotic tissues and cells. Furthermore, In vitro data demonstrated that knockdown of Smad2 in human hepatic stellate cells increased expression of collagen I (Col.I), tissue inhibitor of metalloproteinase-1 (TIMP-1) whereas decreasing expression of the matrix metalloproteinases-2(MMP-2) in presence of TGF-β1 compared with control group. In contrast, knockdown of Smad3 significantly reduced TGF-β1-induced Col.I production. These findings were further evident by the results that overexpression of Smad2 attenuated the expression of Col.I and TIMP-1, but enhanced MMP-2 whereas overexpression of Smad3 showed the opposite effect. Furthermore, Smad2 suppressed the phosphorylation and nuclear translocation of Smad3, which may protect against Smad3-mediated fibrotic response. Collectively, Smad2 may be a potential therapeutic target for the treatment of hepatic fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TGF-β1:

Transforming growth factor-β1

TIMP-1:

Issue inhibitor of metalloproteinase 1

MMP-2:

Matrix-degrading enzyme 2

EMT:

Epithelial-to-mesenchymal transition

ECM:

Extracellular matrix

KO:

Knockout

SMAD2:

Mothers against decapentaplegic homolog 2

SMAD3:

Mothers against decapentaplegic homolog 3

References

  1. Finnson KW, McLean S, Di Guglielmo GM, Philip A (2013) Dynamics of transforming growth factor beta signaling in wound healing and scarring. Adv Wound Care (New Rochelle) 2:195–214

    Article  Google Scholar 

  2. Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A (2013) Critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care (New Rochelle) 2:215–224

    Article  Google Scholar 

  3. Wells RG (2000) Fibrogenesis. V. TGF-beta signaling pathways. Am J Physiol Gastrointest Liver Physiol 279:G845–G850

    CAS  PubMed  Google Scholar 

  4. Mu Y, Gudey SK, Landstrom M (2012) Non-Smad signaling pathways. Cell Tissue Res 347:11–20

    Article  CAS  PubMed  Google Scholar 

  5. Chen J, Xia Y, Lin X, Feng XH, Wang Y (2014) Smad3 signaling activates bone marrow-derived fibroblasts in renal fibrosis. Lab Invest 94:545–556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Matsuzaki K (2013) Smad phospho-isoforms direct context-dependent TGF-beta signaling. Cytokine Growth Factor Rev 24:385–399

    Article  CAS  PubMed  Google Scholar 

  7. Kretschmer A, Moepert K, Dames S, Sternberger M, Kaufmann J, Klippel A (2003) Differential regulation of TGF-beta signaling through Smad2, Smad3 and Smad4. Oncogene 22:6748–6763

    Article  CAS  PubMed  Google Scholar 

  8. Yagi K, Goto D, Hamamoto T, Takenoshita S, Kato M, Miyazono K (1999) Alternatively spliced variant of Smad2 lacking exon 3. Comparison with wild-type Smad2 and Smad3. J Biol Chem 274:703–709

    Article  CAS  PubMed  Google Scholar 

  9. Nomura M, Li E (1998) Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 393:786–790

    Article  CAS  PubMed  Google Scholar 

  10. Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, Roberts AB, Deng C (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 18:1280–1291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    Article  CAS  PubMed  Google Scholar 

  12. Heyer J, Escalante-Alcalde D, Lia M, Boettinger E, Edelmann W, Stewart CL, Kucherlapati R (1999) Postgastrulation Smad2-deficient embryos show defects in embryo turning and anterior morphogenesis. Proc Natl Acad Sci USA 96:12595–12600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX (1998) Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci U S A 95:9378–9383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y, Wang XF (1999) Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol Cell Biol 19:2495–2504

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP (2004) Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 23:1155–1165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Roberts AB, Tian F, Byfield SD, Stuelten C, Ooshima A, Saika S, Flanders KC (2006) Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev 17:19–27

    Article  CAS  PubMed  Google Scholar 

  17. Vindevoghel L, Lechleider RJ, Kon A, De Caestecker MP, Uitto J, Roberts AB, Mauviel A (1998) SMAD3/4-dependent transcriptional activation of the human type VII collagen gene (COL7A1) promoter by transforming growth factor beta. Proc Natl Acad Sci U S A 95:14769–14774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chen SJ, Yuan W, Mori Y, Levenson A, Trojanowska M, Varga J (1999) Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3. J Invest Dermatol 112:49–57

    Article  CAS  PubMed  Google Scholar 

  19. Ueberham E, Low R, Ueberham U, Schonig K, Bujard H, Gebhardt R (2003) Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology 37:1067–1078

    Article  CAS  PubMed  Google Scholar 

  20. Su E, Han X, Jiang G (2010) The transforming growth factor beta 1/SMAD signaling pathway involved in human chronic myeloid leukemia. Tumori 96:659–666

    CAS  PubMed  Google Scholar 

  21. ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273

    Article  PubMed  Google Scholar 

  22. Uemura M, Swenson ES, Gaca MD, Giordano FJ, Reiss M, Wells RG (2005) Smad2 and Smad3 play different roles in rat hepatic stellate cell function and alpha-smooth muscle actin organization. Mol Biol Cell 16:4214–4224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Liu C, Gaca MD, Swenson ES, Vellucci VF, Reiss M, Wells RG (2003) Smads 2 and 3 are differentially activated by transforming growth factor-beta (TGF-beta) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of Smads in activated cells is TGF-beta-independent. J Biol Chem 278:11721–11728

    Article  CAS  PubMed  Google Scholar 

  24. Gressner OA, Lahme B, Siluschek M, Rehbein K, Weiskirchen R, Gressner AM (2009) Connective tissue growth factor is a Smad2 regulated amplifier of transforming growth factor beta actions in hepatocytes–but without modulating bone morphogenetic protein 7 signaling. Hepatology 49:2021–2030

    Article  CAS  PubMed  Google Scholar 

  25. Ju W, Ogawa A, Heyer J, Nierhof D, Yu L, Kucherlapati R, Shafritz DA, Bottinger EP (2006) Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol Cell Biol 26:654–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Meng XM, Huang XR, Chung AC, Qin W, Shao X, Igarashi P, Ju W, Bottinger EP, Lan HY (2010) Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis. J Am Soc Nephrol 21:1477–1487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Verrecchia F, Chu ML, Mauviel A (2001) Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem 276:17058–17062

    Article  CAS  PubMed  Google Scholar 

  28. Yuan W, Varga J (2001) Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J Biol Chem 276:38502–38510

    Article  CAS  PubMed  Google Scholar 

  29. Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M, Deng C, Kucherlapati R, Bottinger EP, Roberts AB (2001) Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J Biol Chem 276:19945–19953

    Article  CAS  PubMed  Google Scholar 

  30. Roberts AB, Russo A, Felici A, Flanders KC (2003) Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta. Ann N Y Acad Sci 995:1–10

    Article  CAS  PubMed  Google Scholar 

  31. Tarasewicz E, Jeruss JS (2012) Phospho-specific Smad3 signaling: impact on breast oncogenesis. Cell Cycle 11:2443–2451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 85:47–64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Masszi A, Kapus A (2011) Smaddening complexity: the role of Smad3 in epithelial-myofibroblast transition. Cells Tissues Organs 193:41–52

    Article  CAS  PubMed  Google Scholar 

  34. Latella G, Vetuschi A, Sferra R, Catitti V, D’Angelo A, Zanninelli G, Flanders KC, Gaudio E (2009) Targeted disruption of Smad3 confers resistance to the development of dimethylnitrosamine-induced hepatic fibrosis in mice. Liver Int 29:997–1009

    Article  CAS  PubMed  Google Scholar 

  35. Hayes S, Chawla A, Corvera S (2002) TGF beta receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol 158:1239–1249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hu Y, Chuang JZ, Xu K, McGraw TG, Sung CH (2002) SARA, a FYVE domain protein, affects Rab5-mediated endocytosis. J Cell Sci 115:4755–4763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5:410–421

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese National Natural Science Foundation Project (81100302) and Intercollegiate Key Projects of Nature Science of Anhui Province (KJ2011A174).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Additional information

Lei Zhang and Changwei Liu have contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, C., Meng, Xm. et al. Smad2 protects against TGF-β1/Smad3-mediated collagen synthesis in human hepatic stellate cells during hepatic fibrosis. Mol Cell Biochem 400, 17–28 (2015). https://doi.org/10.1007/s11010-014-2258-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2258-1

Keywords

Navigation