Skip to main content
Log in

On the Construction of Hartle–Hawking–Israel States Across a Static Bifurcate Killing Horizon

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a linear scalar quantum field propagating in a spacetime of dimension d ≥ 2 with a static bifurcate Killing horizon and a wedge reflection. Under suitable conditions (e.g. positive mass), we prove the existence of a pure Hadamard state which is quasi-free, invariant under the Killing flow and restricts to a double β H -KMS state on the union of the exterior wedge regions, where β H is the inverse Hawking temperature. The existence of such a state was first conjectured by Hartle and Hawking (Phys Rev D 13:2188–2203, 1976) and by Israel (Phys Lett 57:107–110, 1976), in the more general case of a stationary black hole spacetime. Jacobson (Phys Rev D 50:R6031–R6032, 1994) has conjectured a similar state to exist even for interacting fields in spacetimes with a static bifurcate Killing horizon. The state can serve as a ground state on the entire spacetime and the resulting situation generalises that of the Unruh effect in Minkowski spacetime. Our result complements a well-known uniqueness result of Kay and Wald (Phys Rep 207:49–136, 1991) and Kay (J Math Phys 34:4519–4539, 1993), who considered a general bifurcate Killing horizon and proved that a certain (large) subalgebra of the free field admits at most one Hadamard state which is invariant under the Killing flow. This state is pure and quasi-free and in the presence of a wedge reflection it restricts to a β H -KMS state on the smaller subalgebra associated to one of the exterior wedge regions. Our result establishes the existence of such a state on the full algebra, but only in the static case. Our proof follows the arguments of Sewell (Ann Phys 141: 201–224, 1982) and Jacobson (Phys Rev D 50:R6031–R6032, 1994), who exploited a Wick rotation in the Killing time coordinate to construct a corresponding Euclidean theory. In particular, we show that for the linear scalar field we can recover a Lorentzian theory by Wick rotating back. Because the Killing time coordinate is ill-defined on the bifurcation surface, we systematically replace it by a Gaussian normal coordinate. A crucial part of our proof is to establish that the Euclidean ground state satisfies the necessary analogues of analyticity and reflection positivity with respect to this coordinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bär, C., Fredenhagen, K. (eds.): Quantum Field Theory on Curved Spacetimes. Springer, Berlin (2009)

  2. Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. EMS, Zürich (2007)

  3. Bardeen J.M., Carter B., Hawking S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bernal A.N., Sánchez M.: On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461–470 (2003)

    Article  ADS  MATH  Google Scholar 

  5. Bernal A.N., Sánchez M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Boyer R.H.: Geodesic Killing orbits and bifurcate Killing horizons. Proc. Roy. Soc. London A. 311, 245–252 (1969)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle—a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Camporesi R.: Harmonic analysis and propagators on homogeneous spaces. Phys. Rep. 196, 1–134 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dabrowski, Y., Brouder, C.: Functional properties of Hörmander’s space of distributions having a specified wavefront set. arXiv:1308.1061 [math-ph]

  10. Dappiaggi C., Moretti V., Pinamonti N.: Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime. Adv. Theor. Math. Phys. 15, 355–447 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dimock J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219–228 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Duistermaat J.J., Hörmander L.: Fourier integral operators. II. Acta Math. 128, 183–269 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fredenhagen K., Haag R.: On the derivation of Hawking radiation associated with the formation of a black hole. Commun. Math. Phys. 127, 273–284 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Friedlander, F.G.: The wave equation on a curved space-time. In: Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1975)

  15. Fulling, S.A.: Aspects of Quantum Field Theory in Curved Space time. Cambridge University Press, Cambridge (1991)

  16. Fulling S.A., Ruijsenaars S.N.: Temperature, periodicity and horizons. Phys. Rep. 152, 135–176 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gårding, L.; Lions, J.-L.: Functional analysis. Nuovo Cimento (10) 14 supplemento 9–66 (1959)

  18. Gérard, C.; Wrochna, M.: Construction of Hadamard states by pseudo-differential calculus. arXiv:1209.2604 [math-ph]

  19. Gibbons G.W., Perry M.J.: Black holes and thermal Green functions. Proc. R. Soc. Lond. A. 358, 467–494 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hartle J.B., Hawking S.W.: Path-integral derivation of black-hole radiance. Phys. Rev. D 13, 2188–2203 (1976)

    Article  ADS  Google Scholar 

  21. Hawking S.W.: Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26, 1344–1346 (1971)

    Article  ADS  Google Scholar 

  22. Hawking S.W.: Black hole explosions?. Nature 248, 30–31 (1974)

    Article  ADS  Google Scholar 

  23. Hawking S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  24. Hawking, S.W.: Erratum: “Particle creation by black holes” (Commun. Math. Phys. 43 199–220 (1975)), Commun. Math. Phys. 46, 206 (1976)

  25. Hollands S., Wald R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289–326 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Hollands S., Wald R.M.: Axiomatic quantum field theory in curved spacetime. Commun. Math. Phys. 293, 85–125 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Hörmander L.: A remark on the characteristic Cauchy problem. J. Funct. Anal. 93, 270–277 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hörmander L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, Berlin (1997)

    MATH  Google Scholar 

  29. Hörmander L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (2003)

    MATH  Google Scholar 

  30. Hörmander L.: The Analysis of Linear Partial Differential Operators III. Springer, Berlin (2003)

    Google Scholar 

  31. Israel W.: Thermo-field dynamics of black holes. Phys. Lett. 57, 107–110 (1976)

    Article  MathSciNet  Google Scholar 

  32. Jacobson T.: Note on Hartle-Hawking vacua. Phys. Rev. D. 50, R6031–R6032 (1994)

    Article  ADS  Google Scholar 

  33. Kay B.S.: A uniqueness result for quasifree KMS states. Helv. Phys. Acta. 58, 1017–1029 (1985)

    MathSciNet  Google Scholar 

  34. Kay B.S.: Purification of KMS states. Helv. Phys. Acta 58, 1030–1040 (1985)

    MathSciNet  Google Scholar 

  35. Kay B.S.: The double-wedge algebra for quantum fields on Schwarzschild and Minkowski spacetimes. Commun. Math. Phys. 100, 57–81 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Kay B.S.: Sufficient conditions for quasifree states and an improved uniqueness theorem for quantum fields on space-times with horizons. J. Math. Phys. 34, 4519–4539 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Kay B.S., Wald R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon. Phys. Rep. 207, 49–136 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Lang, S.: Real and Functional Analysis. Springer, New York (1993)

  39. Moretti V.: Proof of the symmetry of the off-diagonal heat-kernal and Hadamard’s expansion coefficients in general C Riemannian manifolds. Commun. Math. Phys. 208, 283–308 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Moretti V.: Proof of the symmetry of the off-diagonal Hadamard/Seeley-DeWitt’s coefficients in C Lorentzian manifolds by a “local Wick rotation”. Commun. Math. Phys. 212, 165–189 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Moretti, V.: Private communication

  42. Moretti V., Pinamonti N.: State independence for tunneling processes through black hole horizons and Hawking radiation. Commun. Math. Phys. 309, 295–311 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. O’Neill, B.: Semi-Riemannian Geometry: with Applications to Relativity. Academic Press, New York (1983)

  44. Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Osterwalder, K., Schrader R.: Axioms for Euclidean Green’s functions. II (with an appendix by Stephen Summers) Commun. Math. Phys. 42, 281–305 (1975)

  46. Poisson, E.; Pound, A.; Vega, I.: The motion of point particles in curved spacetime. Living Rev. Relativ. 14, 7 (2011)

  47. Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Radzikowski M.J.: A local-to-global singularity theorem for quantum field theory on curved space-time, (with an appendix by RVerch). Commun. Math. Phys. 180, 1–22 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Sánchez M.: On the geometry of static spacetimes. Nonlinear Anal. 63, e455–e463 (2005)

    Article  MATH  Google Scholar 

  50. Sanders K.: Thermal equilibrium states of a linear scalar quantum field in stationary space-times. Internat. J. Mod. Phys. A. 28, 1330010 (2013)

    Article  ADS  Google Scholar 

  51. Sewell G.L.: Relativity of temperature and the Hawking effect. Phys. Lett. A. 79, 23–24 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  52. Sewell G.: Quantum fields on manifolds: PCT and gravitationally induced thermal states. Ann. Phys. 141, 201–224 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  53. Strohmaier A.: The Reeh-Schlieder property for quantum fields on stationary spacetimes. Commun. Math. Phys. 215, 105–118 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Strohmaier A., Verch R., Wollenberg M.: Microlocal analysis of quantum fields on curved spacetimes: analytic wavefront sets and Reeh-Schlieder theorems. J. Math. Phys. 43, 5514–5530 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. Unruh W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976)

    Article  ADS  Google Scholar 

  56. Wald R.M.: On particle creation by black holes. Commun. Math. Phys. 45, 9–34 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  57. Wald, R.M.: General Relativity. University of Chicago press, Chicago (1984)

  58. Wald, R.M.: Quantum field theory in curved spacetime and black hole thermodynamics. In: Chicago Lectures in Physics. University of Chicago Press, Chicago (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko Sanders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanders, K. On the Construction of Hartle–Hawking–Israel States Across a Static Bifurcate Killing Horizon. Lett Math Phys 105, 575–640 (2015). https://doi.org/10.1007/s11005-015-0745-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0745-2

Mathematics Subject Classification

Keywords

Navigation