Letters in Mathematical Physics

, Volume 105, Issue 4, pp 575–640 | Cite as

On the Construction of Hartle–Hawking–Israel States Across a Static Bifurcate Killing Horizon

  • Ko SandersEmail author


We consider a linear scalar quantum field propagating in a spacetime of dimension d ≥ 2 with a static bifurcate Killing horizon and a wedge reflection. Under suitable conditions (e.g. positive mass), we prove the existence of a pure Hadamard state which is quasi-free, invariant under the Killing flow and restricts to a double β H -KMS state on the union of the exterior wedge regions, where β H is the inverse Hawking temperature. The existence of such a state was first conjectured by Hartle and Hawking (Phys Rev D 13:2188–2203, 1976) and by Israel (Phys Lett 57:107–110, 1976), in the more general case of a stationary black hole spacetime. Jacobson (Phys Rev D 50:R6031–R6032, 1994) has conjectured a similar state to exist even for interacting fields in spacetimes with a static bifurcate Killing horizon. The state can serve as a ground state on the entire spacetime and the resulting situation generalises that of the Unruh effect in Minkowski spacetime. Our result complements a well-known uniqueness result of Kay and Wald (Phys Rep 207:49–136, 1991) and Kay (J Math Phys 34:4519–4539, 1993), who considered a general bifurcate Killing horizon and proved that a certain (large) subalgebra of the free field admits at most one Hadamard state which is invariant under the Killing flow. This state is pure and quasi-free and in the presence of a wedge reflection it restricts to a β H -KMS state on the smaller subalgebra associated to one of the exterior wedge regions. Our result establishes the existence of such a state on the full algebra, but only in the static case. Our proof follows the arguments of Sewell (Ann Phys 141: 201–224, 1982) and Jacobson (Phys Rev D 50:R6031–R6032, 1994), who exploited a Wick rotation in the Killing time coordinate to construct a corresponding Euclidean theory. In particular, we show that for the linear scalar field we can recover a Lorentzian theory by Wick rotating back. Because the Killing time coordinate is ill-defined on the bifurcation surface, we systematically replace it by a Gaussian normal coordinate. A crucial part of our proof is to establish that the Euclidean ground state satisfies the necessary analogues of analyticity and reflection positivity with respect to this coordinate.

Mathematics Subject Classification

81T20 81T28 


Quantum fields in curved spacetime thermal quantum field theory Hawking radiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bär, C., Fredenhagen, K. (eds.): Quantum Field Theory on Curved Spacetimes. Springer, Berlin (2009)Google Scholar
  2. 2.
    Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. EMS, Zürich (2007)Google Scholar
  3. 3.
    Bardeen J.M., Carter B., Hawking S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)CrossRefADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bernal A.N., Sánchez M.: On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461–470 (2003)CrossRefADSzbMATHGoogle Scholar
  5. 5.
    Bernal A.N., Sánchez M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006)CrossRefADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    Boyer R.H.: Geodesic Killing orbits and bifurcate Killing horizons. Proc. Roy. Soc. London A. 311, 245–252 (1969)CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle—a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)CrossRefADSzbMATHMathSciNetGoogle Scholar
  8. 8.
    Camporesi R.: Harmonic analysis and propagators on homogeneous spaces. Phys. Rep. 196, 1–134 (1990)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Dabrowski, Y., Brouder, C.: Functional properties of Hörmander’s space of distributions having a specified wavefront set. arXiv:1308.1061 [math-ph]
  10. 10.
    Dappiaggi C., Moretti V., Pinamonti N.: Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime. Adv. Theor. Math. Phys. 15, 355–447 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dimock J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219–228 (1980)CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    Duistermaat J.J., Hörmander L.: Fourier integral operators. II. Acta Math. 128, 183–269 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Fredenhagen K., Haag R.: On the derivation of Hawking radiation associated with the formation of a black hole. Commun. Math. Phys. 127, 273–284 (1990)CrossRefADSzbMATHMathSciNetGoogle Scholar
  14. 14.
    Friedlander, F.G.: The wave equation on a curved space-time. In: Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1975)Google Scholar
  15. 15.
    Fulling, S.A.: Aspects of Quantum Field Theory in Curved Space time. Cambridge University Press, Cambridge (1991)Google Scholar
  16. 16.
    Fulling S.A., Ruijsenaars S.N.: Temperature, periodicity and horizons. Phys. Rep. 152, 135–176 (1987)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Gårding, L.; Lions, J.-L.: Functional analysis. Nuovo Cimento (10) 14 supplemento 9–66 (1959)Google Scholar
  18. 18.
    Gérard, C.; Wrochna, M.: Construction of Hadamard states by pseudo-differential calculus. arXiv:1209.2604 [math-ph]
  19. 19.
    Gibbons G.W., Perry M.J.: Black holes and thermal Green functions. Proc. R. Soc. Lond. A. 358, 467–494 (1978)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Hartle J.B., Hawking S.W.: Path-integral derivation of black-hole radiance. Phys. Rev. D 13, 2188–2203 (1976)CrossRefADSGoogle Scholar
  21. 21.
    Hawking S.W.: Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26, 1344–1346 (1971)CrossRefADSGoogle Scholar
  22. 22.
    Hawking S.W.: Black hole explosions?. Nature 248, 30–31 (1974)CrossRefADSGoogle Scholar
  23. 23.
    Hawking S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Hawking, S.W.: Erratum: “Particle creation by black holes” (Commun. Math. Phys. 43 199–220 (1975)), Commun. Math. Phys. 46, 206 (1976)Google Scholar
  25. 25.
    Hollands S., Wald R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289–326 (2001)CrossRefADSzbMATHMathSciNetGoogle Scholar
  26. 26.
    Hollands S., Wald R.M.: Axiomatic quantum field theory in curved spacetime. Commun. Math. Phys. 293, 85–125 (2010)CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. 27.
    Hörmander L.: A remark on the characteristic Cauchy problem. J. Funct. Anal. 93, 270–277 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Hörmander L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, Berlin (1997)zbMATHGoogle Scholar
  29. 29.
    Hörmander L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (2003)zbMATHGoogle Scholar
  30. 30.
    Hörmander L.: The Analysis of Linear Partial Differential Operators III. Springer, Berlin (2003)Google Scholar
  31. 31.
    Israel W.: Thermo-field dynamics of black holes. Phys. Lett. 57, 107–110 (1976)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Jacobson T.: Note on Hartle-Hawking vacua. Phys. Rev. D. 50, R6031–R6032 (1994)CrossRefADSGoogle Scholar
  33. 33.
    Kay B.S.: A uniqueness result for quasifree KMS states. Helv. Phys. Acta. 58, 1017–1029 (1985)MathSciNetGoogle Scholar
  34. 34.
    Kay B.S.: Purification of KMS states. Helv. Phys. Acta 58, 1030–1040 (1985)MathSciNetGoogle Scholar
  35. 35.
    Kay B.S.: The double-wedge algebra for quantum fields on Schwarzschild and Minkowski spacetimes. Commun. Math. Phys. 100, 57–81 (1985)CrossRefADSzbMATHMathSciNetGoogle Scholar
  36. 36.
    Kay B.S.: Sufficient conditions for quasifree states and an improved uniqueness theorem for quantum fields on space-times with horizons. J. Math. Phys. 34, 4519–4539 (1993)CrossRefADSzbMATHMathSciNetGoogle Scholar
  37. 37.
    Kay B.S., Wald R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon. Phys. Rep. 207, 49–136 (1991)CrossRefADSzbMATHMathSciNetGoogle Scholar
  38. 38.
    Lang, S.: Real and Functional Analysis. Springer, New York (1993)Google Scholar
  39. 39.
    Moretti V.: Proof of the symmetry of the off-diagonal heat-kernal and Hadamard’s expansion coefficients in general C Riemannian manifolds. Commun. Math. Phys. 208, 283–308 (1999)CrossRefADSzbMATHMathSciNetGoogle Scholar
  40. 40.
    Moretti V.: Proof of the symmetry of the off-diagonal Hadamard/Seeley-DeWitt’s coefficients in C Lorentzian manifolds by a “local Wick rotation”. Commun. Math. Phys. 212, 165–189 (2000)CrossRefADSzbMATHMathSciNetGoogle Scholar
  41. 41.
    Moretti, V.: Private communicationGoogle Scholar
  42. 42.
    Moretti V., Pinamonti N.: State independence for tunneling processes through black hole horizons and Hawking radiation. Commun. Math. Phys. 309, 295–311 (2012)CrossRefADSzbMATHMathSciNetGoogle Scholar
  43. 43.
    O’Neill, B.: Semi-Riemannian Geometry: with Applications to Relativity. Academic Press, New York (1983)Google Scholar
  44. 44.
    Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973)CrossRefADSzbMATHMathSciNetGoogle Scholar
  45. 45.
    Osterwalder, K., Schrader R.: Axioms for Euclidean Green’s functions. II (with an appendix by Stephen Summers) Commun. Math. Phys. 42, 281–305 (1975)Google Scholar
  46. 46.
    Poisson, E.; Pound, A.; Vega, I.: The motion of point particles in curved spacetime. Living Rev. Relativ. 14, 7 (2011)Google Scholar
  47. 47.
    Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)CrossRefADSzbMATHMathSciNetGoogle Scholar
  48. 48.
    Radzikowski M.J.: A local-to-global singularity theorem for quantum field theory on curved space-time, (with an appendix by RVerch). Commun. Math. Phys. 180, 1–22 (1996)CrossRefADSzbMATHMathSciNetGoogle Scholar
  49. 49.
    Sánchez M.: On the geometry of static spacetimes. Nonlinear Anal. 63, e455–e463 (2005)CrossRefzbMATHGoogle Scholar
  50. 50.
    Sanders K.: Thermal equilibrium states of a linear scalar quantum field in stationary space-times. Internat. J. Mod. Phys. A. 28, 1330010 (2013)CrossRefADSGoogle Scholar
  51. 51.
    Sewell G.L.: Relativity of temperature and the Hawking effect. Phys. Lett. A. 79, 23–24 (1980)CrossRefADSMathSciNetGoogle Scholar
  52. 52.
    Sewell G.: Quantum fields on manifolds: PCT and gravitationally induced thermal states. Ann. Phys. 141, 201–224 (1982)CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Strohmaier A.: The Reeh-Schlieder property for quantum fields on stationary spacetimes. Commun. Math. Phys. 215, 105–118 (2000)CrossRefADSzbMATHMathSciNetGoogle Scholar
  54. 54.
    Strohmaier A., Verch R., Wollenberg M.: Microlocal analysis of quantum fields on curved spacetimes: analytic wavefront sets and Reeh-Schlieder theorems. J. Math. Phys. 43, 5514–5530 (2002)CrossRefADSzbMATHMathSciNetGoogle Scholar
  55. 55.
    Unruh W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976)CrossRefADSGoogle Scholar
  56. 56.
    Wald R.M.: On particle creation by black holes. Commun. Math. Phys. 45, 9–34 (1975)CrossRefADSMathSciNetGoogle Scholar
  57. 57.
    Wald, R.M.: General Relativity. University of Chicago press, Chicago (1984)Google Scholar
  58. 58.
    Wald, R.M.: Quantum field theory in curved spacetime and black hole thermodynamics. In: Chicago Lectures in Physics. University of Chicago Press, Chicago (1994)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany

Personalised recommendations