Auto-oscillations of Skinned Myocardium Correlating with Heartbeat

  • Daisuke Sasaki
  • Hideaki Fujita
  • Norio Fukuda
  • Satoshi Kurihara
  • Shin’ichi IshiwataEmail author


Skinned myocardium (or myofibrils) exhibits auto-oscillations of sarcomere length and developed force called SPOC (SPontaneousOscillatoryContraction) under partial activation conditions. In SPOC, each sarcomere repeats the cycle of slow shortening and rapid lengthening, and the lengthening phase propagates sequentially to the adjacent sarcomeres in waves (SPOC wave). In this study, we analyzed the sarcomeric oscillation in SPOC in skinned myocardium of various animal species (rat, rabbit, dog, pig, and cow) with different heart rates. The period of oscillation, the sarcomere shortening velocity, and the velocity of SPOC wave, strongly correlated with the resting heart rate of the animal species. The shortening velocity in particular was proportional to the resting heart rate. We then examined the motile activity of each cardiac myosin by an in vitro motility assay. The sliding velocity of actin filaments, which is an index of the motile activity of myosin, also correlated with the resting heart rate but the relationship was not proportional. As a result, the ratio of sarcomere shortening velocity in SPOC to the sliding velocity of actin filaments was not constant but became higher with a higher heart rate. This suggests that the sarcomere shortening velocity in SPOC is modulated by some additional factors besides the motile activity of myosin, resulting in the proportional relationship between the shortening velocity of the sarcomere and the resting heart rate.


Heart Rate Activation Condition Animal Species Actin Filament Partial Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altman PL and Dittmer DS (eds) (1974) Biology Data Book, 2nd edn. (vol. 3, pp. 1686–1693) Federation of American Societies for Experiental Biology, Bethesda, MD.Google Scholar
  2. 2.
    Anazawa, T, Yasuda, K, Ishiwata, S 1992Spontaneous oscillation of tension and sarcomere length in skeletal myofibrils.Microscopic measurement and analysisBiophys J6110991108PubMedGoogle Scholar
  3. 3.
    Barany, M 1967ATPase Activity of Myosin Correlated with Speed of Muscle Shortening.J Gen Physiol50197218PubMedCrossRefGoogle Scholar
  4. 4.
    Cazorla, O, Freiburg, A, Helmes, M, Centner, T, McNabb, M, Wu, Y, Trombitas, K, Labeit, S, Granzier, H 2000Differential expression of cardiac titin isoforms and modulation of cellular stiffness.Circ Res865967PubMedGoogle Scholar
  5. 5.
    Dillmann, WH 1984Hormonal influences on cardiac myosin ATPase activity and myosin isoenzyme distributionMol Cell Endocrinol34169181PubMedCrossRefGoogle Scholar
  6. 6.
    Fabiato, A, Fabiato, F 1978Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cellsJ Gen Physiol72667699PubMedCrossRefGoogle Scholar
  7. 7.
    Fukuda, N, Fujita, H, Fujita, T, Ishiwata, S 1996Spontaneous tension oscillation in skinned bovine cardiac musclePflügers Arch43318PubMedCrossRefGoogle Scholar
  8. 8.
    Fukuda, N, Ishiwata, S 1999Effects of pH on spontaneous tension oscillation in skinned bovine cardiac musclePflügers Arch438125132PubMedCrossRefGoogle Scholar
  9. 9.
    Hamilton, N, Ianuzzo, CD 1991Contractile and calcium regulating capacities of myocardia of different sized mammals scale with resting heart rateMol Cell Biochem106133141PubMedCrossRefGoogle Scholar
  10. 10.
    Hasselbach, W, Schneider, G 1951L-Myosin and actin content of guinea-pig muscleBiochem Z321462475PubMedGoogle Scholar
  11. 11.
    Homsher, E, Nili, M, Chen, IY, Tobacman, LS 2003Regulatory proteins alter nucleotide binding to acto-myosin of sliding filaments in motility assays.Biophys J8510461052PubMedGoogle Scholar
  12. 12.
    Ishiwata, S, Okamura, N, Shimizu, H, Anazawa, T, Yasuda, K 1991Spontaneous oscillatory contraction (SPOC) of sarcomeres in skeletal muscleAdv Biophys27227235PubMedGoogle Scholar
  13. 13.
    Ishiwata, S, Yasuda, K 1993Mechano-chemical coupling in spontaneous oscillatory contraction of musclePhase Transitions45105136Google Scholar
  14. 14.
    Kondo, H, Ishiwata, S 1976Uni-directional growth of F-actinJ Biochem (Tokyo)79159171Google Scholar
  15. 15.
    Linke, WA, Bartoo, ML, Pollack, GH 1993Spontaneous sarcomeric oscillations at intermediate activation levels in single isolated cardiac myofibrilsCirc Res73724734PubMedGoogle Scholar
  16. 16.
    Maruyama, K 1997Connectin/titin, giant elastic protein of muscleFASEB J11341345PubMedGoogle Scholar
  17. 17.
    Okamura, N, Ishiwata, S 1988Spontaneous oscillatory contraction of sarcomeres in skeletal myofibrils.J Muscle Res Cell Motil9111119PubMedCrossRefGoogle Scholar
  18. 18.
    Opitz, CA, Kulke, M, Leake, MC, Neagoe, C, Hinssen, H, Hajjar, RJ, Linke, WA 2003Damped elastic recoil of the titin spring in myofibrils of human myocardium.Proc Natl Acad Sci U S A1001268812693PubMedCrossRefGoogle Scholar
  19. 19.
    Sata, M, Sugiura, S, Yamashita, H, Momomura, S, Serizawa, T 1993Dynamic interaction between cardiac myosin isoforms modifies velocity of actomyosin sliding in vitro.Circ Res73696704PubMedGoogle Scholar
  20. 20.
    Stehle, R, Krüger, M, Pfitzer, G 2002Force kinetics and individual sarcomere dynamics in cardiac myofibrils after rapid Ca2+ changes.Biophys J8321522161PubMedGoogle Scholar
  21. 21.
    Sugiura, S, Kobayakawa, N, Momomura, S, Chaen, S, Omata, M, Sugi, H 1996Different cardiac myosin isoforms exhibit equal force-generating ability in vitro.Biochim Biophys Acta12737376PubMedGoogle Scholar
  22. 22.
    Svensson, C, Morano, I, Arner, A 1997In vitro motility assay of atrial and ventricular myosin from pig.J Cell Biochem67241247PubMedCrossRefGoogle Scholar
  23. 23.
    VanBuren, P, Harris, DE, Alpert, NR, Warshaw, DM 1995Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro.Circ Res77439444PubMedGoogle Scholar
  24. 24.
    Wang, K 1996Titin/connectin and nebulin: giant protein rulers of muscle structure and function.Adv Biophys33123134PubMedGoogle Scholar
  25. 25.
    Yasuda, K, Shindo, Y, Ishiwata, S 1996Synchronous behavior of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions.Biophys J7018231829PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Daisuke Sasaki
    • 1
  • Hideaki Fujita
    • 2
  • Norio Fukuda
    • 3
  • Satoshi Kurihara
    • 3
  • Shin’ichi Ishiwata
    • 4
    • 5
    Email author
  1. 1.Integrative Bioscience and Biomedical Engineering, Graduate School of Science and EngineeringWaseda UniversityShinjuku-kuJapan
  2. 2.Tohoku University Biomedical Engineering Research OrganizationAobaku SendaiJapan
  3. 3.Department of Physiology (II)The Jikei University School of MedicineTokyoJapan
  4. 4.Department of Physics, School of Science and EngineeringWaseda UniversityTokyoJapan
  5. 5.Advanced Research Institute for Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations