Skip to main content
Log in

Magnetohydrodynamics thermogravitational convective in a novel I-shaped wavy-walled enclosure considering various inner hot pipe locations

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work numerically examines natural convection within an I-shaped wavy-walled enclosure with multi-pipes of heat exchangers filled with multi-layers of nanofluid and porous medium saturated with the same nanofluid. The finite element scheme is used to solve governing equations of mass, momentum along with the energy in dimensionless form. The influence of various dimensionless parameters such as Rayleigh number \(\left({10}^{4}\le Ra\le {10}^{6}\right)\), Darcy number \(\left({10}^{-5}\le Da\le 0.1\right)\), Hartmann number \(\left(0\le Ha\le 60\right)\), number of undulations \(\left(1\le N\le 5\right)\), nanofluid volume fraction \((0.00\le \phi \le 0.06)\), porous layer thickness \(0.6\le {X}_{P}\le 1\) and MHD inclination angle \(\left(0^\circ \le \gamma \le 90^\circ \right)\) is studied to explain their effect on fluid flow and heat transfer that presented in terms of streamlines, isotherms and average Nusselt number. Three different thermal cases of the location of the internal hot pipe are treated. Our results are in a good agreement with previous works. The finding of this study proved that for better heat transfer, it was recommended to use number of undulation \(N=1\) and that the location of the inner pipe is at the bottom of the enclosure (case 1). Moreover, it was obtained that the increase of Rayleigh number (Ra), Darcy number (Da), inclination angle of MHD and the reduction of the porous layer thickness as well as the reduction of Hartmann number (Ha) leads to an increase in heat transfer. Also, the results indicate that enhancement percentage of Nusselt number is 57.77% for Case 1 in a comparison with Case 3 when the number of undulation is \(N=1\). Finally, applying the magnetic field in the vertical direction (at \(\gamma =90^\circ )\) enhances Nusselt number for Case 1 by 53% in a comparison with Case 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Astanina MS, Sheremet MA, Oztop HF, Abu-Hamdeh N. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int J Mech Sci. 2018;136:493–502.

    Article  Google Scholar 

  2. Dogonchi AS, Armaghani T, Chamkha AJ, Ganji D. Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field. Arab J Sci Eng. 2019;44(9):7919–31.

    Article  CAS  Google Scholar 

  3. El Mansouri A, Hasnaoui M, Amahmid A, Alouah M. Numerical analysis of conjugate convection-conduction heat transfer in an air-filled cavity with a rhombus conducting block subjected to subdivision: Cooperating and opposing roles. Int J Heat Mass Transf. 2020;150:119375.

    Article  Google Scholar 

  4. Hosseinjani AA, Nikfar M. Numerical analysis of unsteady natural convection from two heated cylinders inside a rhombus enclosure filled with Cu-water nanofluid. Int Commun Heat Mass Transf. 2020;113:104510.

    Article  CAS  Google Scholar 

  5. Mehryan S, Ghalambaz M, Ismael MA, Chamkha AJ. Analysis of fluid-solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane. J Magn Magn Mater. 2017;424:161–73.

    Article  CAS  Google Scholar 

  6. Mejbel AI, Abdulkadhim A, Hamzah RA, Hamzah HK, Ali FH. Natural convection heat transfer for adiabatic circular cylinder inside trapezoidal enclosure filled with nanofluid superposed porous-nanofluid layer. FME Transactions. 2020;48(1):82–9.

    Article  Google Scholar 

  7. Nemati M. Application of lattice Boltzmann method for simulation of natural convection nanofluid flow inside a parallelogram shaped cavity with two triangular obstacles in the presence of magnetic field. نشریه پژوهشی مهندسی مکانیک ایران. 2019;21(2):92–113.

  8. Rashad A, Chamkha AJ, Ismael MA, Salah T. Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation. Journal of Heat Transfer. 2018;140(7).

  9. Rashad A, Rashidi M, Lorenzini G, Ahmed SE, Aly AM. Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu–water nanofluid. Int J Heat Mass Transf. 2017;104:878–89.

    Article  CAS  Google Scholar 

  10. Revnic C, Abu-Nada E, Grosan T, Pop I. Natural convection in a rectangular cavity filled with nanofluids: effect of variable viscosity. International Journal of Numerical Methods for Heat & Fluid Flow. 2018.

  11. Tayebi T, Öztop HF, Chamkha AJ. Natural convection and entropy production in hybrid nanofluid filled-annular elliptical cavity with internal heat generation or absorption. Thermal Science and Engineering Progress. 2020;19:100605.

    Article  Google Scholar 

  12. Triveni MK, Panua R. Numerical analysis of natural convection in a triangular cavity with different configurations of hot wall. Int J Heat Technol. 2017;35(1):11–8.

    Article  Google Scholar 

  13. Durmuş A, Durmuş A, Esen M. Investigation of heat transfer and pressure drop in a concentric heat exchanger with snail entrance. Appl Therm Eng. 2002;22(3):321–32.

    Article  Google Scholar 

  14. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46(19):3639–53.

    Article  CAS  Google Scholar 

  15. Abu-Nada E, Chamkha AJ. Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO–EG–water nanofluid. Int J Therm Sci. 2010;49(12):2339–52.

    Article  CAS  Google Scholar 

  16. Malvandi A, Safaei M, Kaffash M, Ganji D. MHD mixed convection in a vertical annulus filled with Al2O3–water nanofluid considering nanoparticle migration. J Magn Magn Mater. 2015;382:296–306.

    Article  CAS  Google Scholar 

  17. Salari M, Malekshah EH, Malekshah MH. Natural convection in a rectangular enclosure filled by two immiscible fluids of air and Al2O3-water nanofluid heated partially from side walls. Alex Eng J. 2018;57(3):1401–12. https://doi.org/10.1016/j.aej.2017.07.004.

    Article  Google Scholar 

  18. Al-Weheibi SM, Rahman M, Alam M, Vajravelu K. Numerical simulation of natural convection heat transfer in a trapezoidal enclosure filled with nanoparticles. Int J Mech Sci. 2017;131:599–612.

    Article  Google Scholar 

  19. Dogonchi AS, Waqas M, Ganji DD. Shape effects of copper-oxide (CuO) nanoparticles to determine the heat transfer filled in a partially heated rhombus enclosure: CVFEM approach. Int Commun Heat Mass Transfer. 2019;107:14–23. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.014.

    Article  CAS  Google Scholar 

  20. Abdulkadhim A. On simulation of the natural convection heat transfer between circular cylinder and an elliptical enclosure filled with nanofluid [part I: the effect of mhd and internal heat generation/absorption]. Math Model Eng Probl. 2019;6:599.

    Article  Google Scholar 

  21. Alsabery AI, Gedik E, Chamkha AJ, Hashim I. Effects of two-phase nanofluid model and localized heat source/sink on natural convection in a square cavity with a solid circular cylinder. Comput Methods Appl Mech Eng. 2019;346:952–81.

    Article  Google Scholar 

  22. Shekaramiz M, Fathi S, Ataabadi HA, Kazemi-Varnamkhasti H, Toghraie D. MHD nanofluid free convection inside the wavy triangular cavity considering periodic temperature boundary condition and velocity slip mechanisms. Int J Therm Sci. 2021;170:107179. https://doi.org/10.1016/j.ijthermalsci.2021.107179.

    Article  CAS  Google Scholar 

  23. Oztop HF, Abu-Nada E, Varol Y, Chamkha A. Natural convection in wavy enclosures with volumetric heat sources. Int J Therm Sci. 2011;50(4):502–14. https://doi.org/10.1016/j.ijthermalsci.2010.10.015.

    Article  Google Scholar 

  24. Esmaeilpour M, Abdollahzadeh M. Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls. Int J Therm Sci. 2012;52:127–36. https://doi.org/10.1016/j.ijthermalsci.2011.08.019.

    Article  CAS  Google Scholar 

  25. Cho C-C, Chen C-L, Chen CO-K. Natural convection heat transfer and entropy generation in wavy-wall enclosure containing water-based nanofluid. Int J of Heat Mass Transf. 2013;61:749–58. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.044.

    Article  CAS  Google Scholar 

  26. Bhardwaj S, Dalal A, Pati S. Influence of wavy wall and non-uniform heating on natural convection heat transfer and entropy generation inside porous complex enclosure. Energy. 2015;79:467–81. https://doi.org/10.1016/j.energy.2014.11.036.

    Article  Google Scholar 

  27. Sheremet MA, Oztop HF, Pop I. MHD natural convection in an inclined wavy cavity with corner heater filled with a nanofluid. J Magn Magn Mater. 2016;416:37–47. https://doi.org/10.1016/j.jmmm.2016.04.061.

    Article  CAS  Google Scholar 

  28. Sheremet MA, Pop I, ÖZtop HF, Abu-Hamdeh N. Natural convective heat transfer and nanofluid flow in a cavity with top wavy wall and corner heater. J HydrodynSer B. 2016;28(5):873–85. https://doi.org/10.1016/S1001-6058(16)60688-1.

    Article  Google Scholar 

  29. Sheikholeslami M, Gerdroodbary MB, Shafee A, Tlili I. Hybrid nanoparticles dispersion into water inside a porous wavy tank involving magnetic force. J Therm Anal Calorim. 2020;141(5):1993–9.

    Article  CAS  Google Scholar 

  30. Afsana S, Molla MM, Nag P, Saha LK, Siddiqa S. MHD natural convection and entropy generation of non-Newtonian ferrofluid in a wavy enclosure. Int J Mech Sci. 2021;198: 106350. https://doi.org/10.1016/j.ijmecsci.2021.106350.

    Article  Google Scholar 

  31. Barman P, Rao PS. Effect of aspect ratio on natural convection in a wavy porous cavity submitted to a partial heat source. Int Commun Heat Mass Transf. 2021;126: 105453. https://doi.org/10.1016/j.icheatmasstransfer.2021.105453.

    Article  Google Scholar 

  32. Hatami M. Nanoparticles migration around the heated cylinder during the RSM optimization of a wavy-wall enclosure. Adv Powder Technol. 2017;28(3):890–9. https://doi.org/10.1016/j.apt.2016.12.015.

    Article  CAS  Google Scholar 

  33. Hashim I, Alsabery AI, Sheremet MA, Chamkha AJ. Numerical investigation of natural convection of Al2O3-water nanofluid in a wavy cavity with conductive inner block using Buongiorno’s two-phase model. Adv Powder Technol. 2019;30(2):399–414. https://doi.org/10.1016/j.apt.2018.11.017.

    Article  CAS  Google Scholar 

  34. Abdelmalek Z, Tayebi T, Dogonchi AS, Chamkha AJ, Ganji DD, Tlili I. Role of various configurations of a wavy circular heater on convective heat transfer within an enclosure filled with nanofluid. Int Commun Heat Mass Transf. 2020;113: 104525. https://doi.org/10.1016/j.icheatmasstransfer.2020.104525.

    Article  CAS  Google Scholar 

  35. Mokaddes Ali M, Akhter R, Alim MA. Hydromagnetic natural convection in a wavy-walled enclosure equipped with hybrid nanofluid and heat generating cylinder. Alex Eng J. 2021;60(6):5245–64. https://doi.org/10.1016/j.aej.2021.04.059.

    Article  Google Scholar 

  36. Abdulkadhim A, Hamzah HK, Ali FH, Abed AM, Abed IM. Natural convection among inner corrugated cylinders inside wavy enclosure filled with nanofluid superposed in porous–nanofluid layers. Int Commun Heat Mass Transf. 2019;109: 104350. https://doi.org/10.1016/j.icheatmasstransfer.2019.104350.

    Article  CAS  Google Scholar 

  37. Ahmed SE, Rashed ZZ. MHD natural convection in a heat generating porous medium-filled wavy enclosures using Buongiorno’s nanofluid model. Case Stud Therm Eng. 2019;14:100430. https://doi.org/10.1016/j.csite.2019.100430.

    Article  Google Scholar 

  38. Alsabery AI, Mohebbi R, Chamkha AJ, Hashim I. Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem Eng Sci. 2019;201:247–63. https://doi.org/10.1016/j.ces.2019.03.006.

    Article  CAS  Google Scholar 

  39. Aly AM, Raizah ZAS. Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles. Physica A. 2020;537:122623. https://doi.org/10.1016/j.physa.2019.122623.

    Article  CAS  Google Scholar 

  40. Abdel-Nour Z, Aissa A, Mebarek-Oudina F, Rashad A, Ali HM, Sahnoun M, et al. Magnetohydrodynamic natural convection of hybrid nanofluid in a porous enclosure: numerical analysis of the entropy generation. J Therm Anal Calorim. 2020;141(5):1981–92.

    Article  CAS  Google Scholar 

  41. Hashemi-Tilehnoee M, Dogonchi A, Seyyedi SM, Chamkha AJ, Ganji D. Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous cavity with wavy heater block. Journal of Thermal Analysis and Calorimetry. 2020:1–13.

  42. Mourad A, Aissa A, Mebarek-Oudina F, Al-Kouz W, Sahnoun M. Natural convection of nanoliquid from elliptic cylinder in wavy enclosure under the effect of uniform magnetic field: numerical investigation. Eur Phys J Plus. 2021;136(4):1–18.

    Article  Google Scholar 

  43. Mourad A, Aissa A, Mebarek-Oudina F, Jamshed W, Ahmed W, Ali HM, et al. Galerkin finite element analysis of thermal aspects of Fe3O4-MWCNT/water hybrid nanofluid filled in wavy enclosure with uniform magnetic field effect. Int Commun Heat Mass Transf. 2021;126:105461. https://doi.org/10.1016/j.icheatmasstransfer.2021.105461.

    Article  CAS  Google Scholar 

  44. Nong H, Fatah AM, Shehzad SA, Ambreen T, Selim MM, Albadarin AB. Numerical modeling for steady-state nanofluid free convection involving radiation through a wavy cavity with Lorentz forces. J Mol Liq. 2021;336: 116324. https://doi.org/10.1016/j.molliq.2021.116324.

    Article  CAS  Google Scholar 

  45. Malekpour A, Karimi N, Mehdizadeh A. Magnetohydrodynamics, natural convection, and entropy generation of CuO–water nanofluid in an I-shape enclosure—a numerical study. J Therm Sci Eng Appl 2018;10(6).

  46. Armaghani T, Chamkha A, Rashad A, Mansour M. Inclined magneto: convection, internal heat, and entropy generation of nanofluid in an I-shaped cavity saturated with porous media. J Therm Anal Calorim. 2020;142(6):2273–85.

    Article  CAS  Google Scholar 

  47. Ma Y, Mohebbi R, Rashidi M, Yang Z, Sheremet M. Nanoliquid thermal convection in I-shaped multiple-pipe heat exchanger under magnetic field influence. Phys A: Stat Mech Appl. 2020;550:124.

    Article  Google Scholar 

  48. Al-Zamily AMJ. Effect of magnetic field on natural convection in a nanofluid-filled semi-circular enclosure with heat flux source. Comput Fluids. 2014;103:71–85.

    Article  Google Scholar 

  49. Chamkha AJ, Ismael MA. Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer Heat Transf Part A Appl. 2014;65(11):1089–113.

    Article  CAS  Google Scholar 

  50. Ghasemi B, Aminossadati S. Periodic natural convection in a nanofluid-filled enclosure with oscillating heat flux. Int J Therm Sci. 2010;49(1):1–9.

    Article  CAS  Google Scholar 

  51. Mahmoudi AH, Pop I, Shahi M. Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid. Int J Therm Sci. 2012;59:126–40.

    Article  CAS  Google Scholar 

  52. Ali FH, Hamzah HK, Egab K, Arıcı M, Shahsavar A. Non-Newtonian nanofluid natural convection in a U-shaped cavity under magnetic field. Int J Mech Sci. 2020;186:105887.

    Article  Google Scholar 

  53. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29(5):1326–36.

    Article  Google Scholar 

  54. Chamkha AJ, Ismael MA. Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int J Therm Sci. 2013;67:135–51.

    Article  CAS  Google Scholar 

  55. Garoosi F, Rohani B, Rashidi MM. Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating. Powder Technol. 2015;275:304–21.

    Article  CAS  Google Scholar 

  56. Alsabery A, Chamkha A, Saleh H, Hashim I. Heatline visualization of conjugate natural convection in a square cavity filled with nanofluid with sinusoidal temperature variations on both horizontal walls. Int J Heat Mass Transf. 2016;100:835–50.

    Article  Google Scholar 

  57. Sheremet MA, Oztop H, Pop I, Al-Salem K. MHD free convection in a wavy open porous tall cavity filled with nanofluids under an effect of corner heater. Int J Heat Mass Transf. 2016;103:955–64.

    Article  CAS  Google Scholar 

  58. Bessaïh R, Oztop HF, Al-Salem K, Bayrak F. Natural convection and entropy generation in a nanofluid filled cavity with thick bottom wall: effects of non-isothermal heating. Int J Mech Sci. 2017;126:95–105.

    Article  Google Scholar 

  59. Abdelmalek Z, Tayebi T, Dogonchi A, Chamkha A, Ganji D, Tlili I. Role of various configurations of a wavy circular heater on convective heat transfer within an enclosure filled with nanofluid. Int Commun Heat Mass Transf. 2020;113:104525.

    Article  CAS  Google Scholar 

  60. Motlagh SY, Soltanipour H. Natural convection of Al2O3-water nanofluid in an inclined cavity using Buongiorno’s two-phase model. Int J Therm Sci. 2017;111:310–20.

    Article  CAS  Google Scholar 

  61. Alsabery A, Sheremet M, Chamkha A, Hashim I. Conjugate natural convection of Al2O3–water nanofluid in a square cavity with a concentric solid insert using Buongiorno’s two-phase model. Int J Mech Sci. 2018;136:200–19.

    Article  Google Scholar 

  62. Al-Zamily A, Amin MR, editors. Natural convection and entropy generation in a cavity filled with two horizontal layers of nanofluid and porous medium in presence of a magnetic field. ASME International Mechanical Engineering Congress and Exposition; 2015: American Society of Mechanical Engineers.

  63. Aminossadati S, Ghasemi B. Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure. Eur J Mech-B/Fluids. 2009;28(5):630–40.

    Article  Google Scholar 

  64. Al-Srayyih BM, Gao S, Hussain SH. Natural convection flow of a hybrid nanofluid in a square enclosure partially filled with a porous medium using a thermal non-equilibrium model. Phys Fluids. 2019;31(4):043609.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Babylon University for giving them the opportunity, time and scientific support for completing this work and the first author is grateful to Al–Mustaqbal University College for the financial support.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through Research Groups Program under grant number RGP.1/22/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejla Mahjoub Said.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulkadhim, A., Abed, I.M. & Said, N.M. Magnetohydrodynamics thermogravitational convective in a novel I-shaped wavy-walled enclosure considering various inner hot pipe locations. J Therm Anal Calorim 147, 7961–7990 (2022). https://doi.org/10.1007/s10973-021-11072-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11072-y

Keywords

Navigation