Skip to main content
Log in

Experimental investigation of hybrid nano-lubricant for rheological and thermal engineering applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nowadays, various types of engine oils are widely used in lubricating and cooling internal combustion engines. In this study, the behavior of MWCNTs–SiO2 (30–70)/10W40 hybrid nanofluid as part of a new generation of engine oil is investigated experimentally. A mixture of SiO2, with 20–30 nm particle diameter, and MWCNT, with 3–5 nm inner and 5–15 nm outer nanoparticle diameter was dispersed into a base fluid of 10W40 engine oil. Then, the viscosity of the product was measured at nanofluid concentrations and temperatures, respectively, ranging from 0.05 to 1% and 5 to 55 °C, for different values of shear rate. Also, a sensitivity analysis to the solid volume fraction was performed at different temperatures. The results show that the behavior of the samples is well fitted with the pseudo-plastic Ostwald de Waele non-Newtonian model. The viscosity of the produced hybrid nano-lubricant is found to be 35% greater than that of pure engine oil. Because of the significant deviation between the measured viscosity and the values predicted by existing classical viscosity models, a new regression model is obtained. The R2 and adj. R2 for the model are computed as 0.988 and 0.977, respectively, signifying strong predictability with ± 3% margin of deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

The distance between any two nanoparticles (m)

h :

Nanoparticle diameter (m)

K :

Structure-dependent parameters

m :

Consistency index

n :

Power-law index

t :

Structure-dependent parameter

T :

Temperature (°C)

w :

Mass (g)

\(\dot{\gamma }\) :

Shear rate (s−1)

µ :

Dynamic viscosity (poise)

ρ :

Density (kg m−3)

τ :

Shear stress (dyne cm−2)

φ :

Nanoparticles volume fraction

bf:

Base fluid

nf:

Nanofluid

HB:

Herschel–Bulkley

OW:

Ostwald de Waele

Y:

Yield stress

References

  1. Murshed SMS, Leong KC, Yang C. Thermophysical and electrokinetic properties of nanofluids—a critical review. Appl Therm Eng. 2008;28:2109–25. https://doi.org/10.1016/j.applthermaleng.2008.01.005.

    Article  CAS  Google Scholar 

  2. Boungiorno J, Hu L, Kim S, Hannink R, Truong B, Forrest E. Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features issues, and research gaps. Nucl Technol. 2008;162:80–91.

    Article  Google Scholar 

  3. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68. https://doi.org/10.1016/j.rser.2010.11.035.

    Article  CAS  Google Scholar 

  4. Murshed SMS, de Castro CAN. Nanofluids as advanced coolants. In: Mohammad A, editor. Green solvents I prop. appl. chem. Dordrecht: Springer; 2012. p. 397–415. https://doi.org/10.1007/978-94-007-1712-1_14.

    Chapter  Google Scholar 

  5. Sidik NAC, Mohammed HA, Alawi OA, Samion S. A review on preparation methods and challenges of nanofluids. Int Commun Heat Mass Transf. 2014;54:115–25. https://doi.org/10.1016/j.icheatmasstransfer.2014.03.002.

    Article  CAS  Google Scholar 

  6. Yu WH, France DM, Routbort JL, Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29:432–60. https://doi.org/10.1080/01457630701850851.

    Article  CAS  Google Scholar 

  7. Sarkar J. A critical review on convective heat transfer correlations of nanofluids. Renew Sustain Energy Rev. 2011;15:3271–7. https://doi.org/10.1016/j.rser.2011.04.025.

    Article  CAS  Google Scholar 

  8. Godson L, Raja B, Mohan Lal D, Wongwises S. Enhancement of heat transfer using nanofluids-an overview. Renew Sustain Energy Rev. 2010;14:629–41. https://doi.org/10.1016/j.rser.2009.10.004.

    Article  CAS  Google Scholar 

  9. Kleinstreuer C, Feng Y. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett. 2011;6:229. https://doi.org/10.1186/1556-276X-6-229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murshed SMS, Nieto de Castro CA. Superior thermal features of carbon nanotubes-based nanofluids—a review. Renew Sustain Energy Rev. 2014;37:155–67. https://doi.org/10.1016/j.rser.2014.05.017.

    Article  CAS  Google Scholar 

  11. Murshed SMS, Estellé P. A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev. 2017;76:1134–52. https://doi.org/10.1016/j.rser.2017.03.113.

    Article  CAS  Google Scholar 

  12. Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006;89:67–70. https://doi.org/10.1063/1.2356113.

    Article  CAS  Google Scholar 

  13. Vajjha RS, Das DK. A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. Int J Heat Mass Transf. 2012;55:4063–78. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.048.

    Article  CAS  Google Scholar 

  14. Sundar LS, Sharma KVV, Naik MTT, Singh MK. Empirical and theoretical correlations on viscosity of nanofluids: a review. Renew Sustain Energy Rev. 2013;25:670–86. https://doi.org/10.1016/j.rser.2013.04.003.

    Article  CAS  Google Scholar 

  15. Meyer JP, Adio SA, Sharifpur M, Nwosu PN. The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models. Heat Transf Eng. 2016;37:387–421. https://doi.org/10.1080/01457632.2015.1057447.

    Article  CAS  Google Scholar 

  16. Chen H, Ding Y, Tan C. Rheological behaviour of nanofluids. New J Phys. 2007;9:367–367. https://doi.org/10.1088/1367-2630/9/10/367.

    Article  CAS  Google Scholar 

  17. Mahbubul IMM, Saidur R, Amalina MAA. Latest developments on the viscosity of nanofluids. Int J Heat Mass Transf. 2012;55:874–85. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.021.

    Article  CAS  Google Scholar 

  18. Mishra PC, Mukherjee S, Nayak SK, Panda A. A brief review on viscosity of nanofluids. Int Nano Lett. 2014;4:109–20. https://doi.org/10.1007/s40089-014-0126-3.

    Article  CAS  Google Scholar 

  19. Hemmat Esfe M, Saedodin S, Rejvani M, Shahram J. Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications. Phys E Low-Dimens Syst Nanostructures. 2017;90:194–203. https://doi.org/10.1016/j.physe.2017.02.015.

    Article  CAS  Google Scholar 

  20. Mondragón R, Segarra C, Martínez-cuenca R, Juliá JE, Carlos J. Experimental characterization and modeling of thermophysical properties of nano fluids at high temperature conditions for heat transfer applications. Powder Technol. 2013;249:516–29. https://doi.org/10.1016/j.powtec.2013.08.035.

    Article  CAS  Google Scholar 

  21. Hemmat Esfe M, Rostamian H, Rejvani M, Emami MRS. Rheological behavior characteristics of ZrO2–MWCNT/10w40 hybrid nano-lubricant affected by temperature, concentration, and shear rate: an experimental study and a neural network simulating. Phys E Low-Dimens Syst Nanostructures. 2018;102:160–70. https://doi.org/10.1016/j.physe.2017.12.023.

    Article  CAS  Google Scholar 

  22. Hemmat Esfe M, Rostamian H, Reza Sarlak M, Rejvani M, Alirezaie A. Rheological behavior characteristics of TiO2–MWCNT/10w40 hybrid nano-oil affected by temperature, concentration and shear rate: an experimental study and a neural network simulating. Phys E Low-Dimens Syst Nanostructures. 2017;94:231–40. https://doi.org/10.1016/j.physe.2017.07.012.

    Article  CAS  Google Scholar 

  23. Murshed SM, Santos FJ, de Castro CA. Investigations of viscosity of silicone oil-based semiconductor nanofluids. J Nanofluids. 2013;2:261–6.

    Article  CAS  Google Scholar 

  24. Chen L, Xie H. Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement. Colloids Surf A Physicochem Eng Asp. 2009;352:136–40. https://doi.org/10.1016/j.colsurfa.2009.10.015.

    Article  CAS  Google Scholar 

  25. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf. 2007;50:2272–81. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.024.

    Article  CAS  Google Scholar 

  26. Abdollahi-Moghaddam M, Rejvani M, Alamdari P. Determining optimal formulations and operating conditions for Al2O3/water nanofluid flowing through a microchannel heat sink for cooling system purposes using statistical and optimization tools. Therm Sci Eng Prog. 2018;8:517–24. https://doi.org/10.1016/j.tsep.2018.10.009.

    Article  Google Scholar 

  27. Rejvani M, Moghaddam MA, Alamdari P. Using statistical and optimization tools for determining optimal formulations and operating conditions for Al2O3/(EG + Water) nanofluids for cooling system. Therm Sci Eng Prog. 2018;7:230–40. https://doi.org/10.1016/j.tsep.2018.07.003.

    Article  Google Scholar 

  28. Esfe MH, Wongwises S, Rejvani M. Prediction of thermal conductivity of carbon nanotube-EG nanofluid using experimental data by ANN. Curr Nanosci. 2017;13:1–6. https://doi.org/10.2174/1573413713666161213114458.

    Article  CAS  Google Scholar 

  29. Lee J-HH, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SUSS, Choi CJ. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf. 2008;51:2651–6. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026.

    Article  CAS  Google Scholar 

  30. Yang L, Du K, Bao S, Wu Y. Investigations of selection of nanofluid applied to the ammonia absorption refrigeration system. Int J Refrig. 2012;35:2248–60. https://doi.org/10.1016/j.ijrefrig.2012.08.003.

    Article  CAS  Google Scholar 

  31. Hemmat Esfe M, Hassani Ahangar MR, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6. https://doi.org/10.1016/j.icheatmasstransfer.2016.04.002.

    Article  CAS  Google Scholar 

  32. Sharma AK, Tiwari AK, Dixit AR. Rheological behaviour of nanofluids: a review. Renew Sustain Energy Rev. 2016;53:779–91. https://doi.org/10.1016/j.rser.2015.09.033.

    Article  CAS  Google Scholar 

  33. Thomas S, Sobhan CBP. A review of experimental investigations on thermal phenomena in nanofluids. Nanoscale Res Lett. 2011;6:377. https://doi.org/10.1186/1556-276x-6-377.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Einstein A. Eine neue bestimmung der moleküldimensionen. Ann Phys. 1906;324:289–306. https://doi.org/10.1002/andp.19063240204.

    Article  Google Scholar 

  35. Frankel NA, Acrivos A. On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci. 1967;22:847–53.

    Article  Google Scholar 

  36. Nielsen LE. Generalized equation for the elastic moduli of composite materials. J Appl Phys. 1970;41:4626. https://doi.org/10.1063/1.1658506.

    Article  Google Scholar 

  37. Mooney M. The viscosity of a concentrated suspension of spherical particles. J Colloid Sci. 1951;6:162–70. https://doi.org/10.1016/0095-8522(51)90036-0.

    Article  CAS  Google Scholar 

  38. Graham AL. On the viscosity of suspensions of solid spheres. Appl Sci Res. 1981;37:275–86.

    Article  CAS  Google Scholar 

  39. De Bruijn H. The viscosity of suspensions of spherical particles. (The fundamental η-c and φ relations). Recl Des Trav Chim Des Pays-Bas. 1942;61:863–74.

    Article  Google Scholar 

  40. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.

    Article  CAS  Google Scholar 

  41. Batchelor BGK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83:97–117.

    Article  Google Scholar 

  42. Krieger IM, Dougherty TJ, Nielsen LE. A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans Soc Rheol. 1959;3:137–52. https://doi.org/10.1122/1.548848.

    Article  CAS  Google Scholar 

  43. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle—fluid mixture. J Thermophys Heat Transf. 1999;13:474–80. https://doi.org/10.2514/2.6486.

    Article  CAS  Google Scholar 

  44. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. Int Commun Heat Mass Transf. 2014;58:176–83. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.037.

    Article  CAS  Google Scholar 

  45. Hemmat Esfe M, Saedodin S. An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions. Exp Therm Fluid Sci. 2014;55:1–5. https://doi.org/10.1016/j.expthermflusci.2014.02.011.

    Article  CAS  Google Scholar 

  46. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations. Int J Heat Mass Transf. 2014;73:186–94. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.069.

    Article  CAS  Google Scholar 

  47. Esfe MH, Saedodin S, Asadi A. An empirical investigation on the dynamic viscosity of Mg (OH) 2–ethylene glycol in different solid concentrations and proposing new correlation based on experimental data. Int J Nat Eng Sci. 2014;8:29–34.

    CAS  Google Scholar 

  48. Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24. https://doi.org/10.1007/s10973-014-4328-8.

    Article  CAS  Google Scholar 

  49. Hemmat Esfe M, Abbasian Arani AA, Rezaie M, Yan WM, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95. https://doi.org/10.1016/j.icheatmasstransfer.2015.06.003.

    Article  CAS  Google Scholar 

  50. Estellé P, Halelfadl S, Doner N, Maré T. Shear history effect on the viscosity of carbon nanotubes water-based nanofluid. Curr Nanosci. 2013;9:225–30. https://doi.org/10.2174/1573413711309020010.

    Article  Google Scholar 

  51. Halelfadl S, Estellé P, Aladag B, Doner N, Maré T. Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature. Int J Therm Sci. 2013;71:111–7. https://doi.org/10.1016/j.ijthermalsci.2013.04.013.

    Article  CAS  Google Scholar 

  52. Phuoc TX, Massoudi M, Chen R-HH. Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int J Therm Sci. 2011;50:12–8. https://doi.org/10.1016/j.ijthermalsci.2010.09.008.

    Article  CAS  Google Scholar 

  53. Estellé P, Halelfadl S, Maré T. Lignin as dispersant for water-based carbon nanotubes nanofluids: impact on viscosity and thermal conductivity. Int Commun Heat Mass Transf. 2014;57:8–12. https://doi.org/10.1016/j.icheatmasstransfer.2014.07.012.

    Article  CAS  Google Scholar 

  54. Hung Y, Chou W. Chitosan for suspension performance and viscosity of MWCNTs. Int J Chem Eng Appl. 2012;3:343–6. https://doi.org/10.7763/IJCEA.2012.V3.215.

    Article  CAS  Google Scholar 

  55. Harish S, Ishikawa K, Einarsson E, Aikawa S, Inoue T. Temperature dependent thermal conductivity increase of aqueous nanofluid with single walled carbon nanotube inclusions. Mater Express. 2012;2:213–23.

    Article  CAS  Google Scholar 

  56. Sadri R, Ahmadi G, Togun H, Dahari M, Kazi SN, Sadeghinezhad E, Zubir N. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res Lett. 2014;9:151–66. https://doi.org/10.1186/1556-276X-9-151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Richmond WR, Jones RL, Fawell PD. The relationship between particle aggregation and rheology in mixed silica–titania suspensions. Chem Eng J. 1998;71:67–75. https://doi.org/10.1016/S1385-8947(98)00105-3.

    Article  CAS  Google Scholar 

  58. Mondragon R, Enrique Julia J, Barba A, Jarque JC. Determination of the packing fraction of silica nanoparticles from the rheological and viscoelastic measurements of nanofluids. Chem Eng Sci. 2012;80:119–27. https://doi.org/10.1016/j.ces.2012.06.009.

    Article  CAS  Google Scholar 

  59. Chevalier J, Tillement O, Ayela F. Structure and rheology of SiO2 nanoparticle suspensions under very high shear rates. Phys Rev E Stat Nonlinear Soft Matter Phys. 2009;80:1–7. https://doi.org/10.1103/physreve.80.051403.

    Article  Google Scholar 

  60. Farbod M, Ahangarpour A. Improved thermal conductivity of Ag decorated carbon nanotubes water based nanofluids. Phys Lett A. 2016;380:4044–8. https://doi.org/10.1016/j.physleta.2016.10.014.

    Article  CAS  Google Scholar 

  61. Esfe MH, Rejvani M, Karimpour R, Abbasian Arani AAAA. Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data. J Therm Anal Calorim. 2017;128:1–13. https://doi.org/10.1007/s10973-016-6002-9.

    Article  CAS  Google Scholar 

  62. Chen H, Ding Y. Heat transfer and rheological behaviour of nanofluids – a review. In: Wang L, editor. Advances in transport phenomena, vol 1. Berlin: Springer; 2009. p. 135–77.

    Chapter  Google Scholar 

  63. Hemmat Esfe M, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT–SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications: an experimental based study. J Therm Anal Calorim. 2018;131:1437–47. https://doi.org/10.1007/s10973-017-6680-y.

    Article  CAS  Google Scholar 

  64. Hemmat Esfe M, Abbasian Arani AA, Shafiei Badi R, Rejvani M. ANN modeling, cost performance and sensitivity analyzing of thermal conductivity of DWCNT–SiO2/EG hybrid nanofluid for higher heat transfer: an experimental study. J Therm Anal Calorim. 2018;131:2381–93. https://doi.org/10.1007/s10973-017-6744-z.

    Article  CAS  Google Scholar 

  65. Anoop K, Sadr R, Al-Jubouri M, Amani M. Rheology of mineral oil-SiO2 nanofluids at high pressure and high temperatures. Int J Therm Sci. 2014;77:108–15. https://doi.org/10.1016/j.ijthermalsci.2013.10.016.

    Article  CAS  Google Scholar 

  66. Baghbanzadeh M, Rashidi A, Soleimanisalim AH, Rashtchian D. Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT. Thermochim Acta. 2014;578:53–8. https://doi.org/10.1016/j.tca.2014.01.004.

    Article  CAS  Google Scholar 

  67. Hemmat Esfe M, Karimpour R, Abbasian Arani AA, Shahram J. Experimental investigation on non-Newtonian behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant affected by alterations of temperature, concentration and shear rate for engine applications. Int Commun Heat Mass Transf. 2017;82:97–102. https://doi.org/10.1016/j.icheatmasstransfer.2017.02.006.

    Article  CAS  Google Scholar 

  68. Esfe MH, Esfandeh S, Afrand M, Rejvani M, Rostamian SH. Experimental evaluation, new correlation proposing and ANN modeling of thermal properties of EG based hybrid nanofluid containing ZnO–DWCNT nanoparticles for internal combustion engines applications. Appl Therm Eng. 2018;133:452–63. https://doi.org/10.1016/j.applthermaleng.2017.11.131.

    Article  CAS  Google Scholar 

  69. Hemmat Esfe M, Alirezaie A, Rejvani M. An applicable study on the thermal conductivity of SWCNT–MgO hybrid nanofluid and price-performance analysis for energy management. Appl Therm Eng. 2017;111:1202–10. https://doi.org/10.1016/j.applthermaleng.2016.09.091.

    Article  CAS  Google Scholar 

  70. Daungthongsuk W, Wongwises S. A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev. 2007;11:797–817. https://doi.org/10.1016/j.rser.2005.06.005.

    Article  CAS  Google Scholar 

  71. Chang TB, Syu SC, Yang YK. Effects of particle volume fraction on spray heat transfer performance of Al2O3-water nanofluid. Int J Heat Mass Transf. 2012;55:1014–21. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.009.

    Article  CAS  Google Scholar 

  72. Herschel WH, Bulkley R. Konsistenzmessungen von Gummi-Benzoll-sungen. Kolloid-Zeitschrift. 1926;39:291–300. https://doi.org/10.1007/BF01432034.

    Article  Google Scholar 

  73. Pordanjani AH, Vahedi SM, Rikhtegar F, Wongwises S. Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7652-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Rejvani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rejvani, M., Saedodin, S., Vahedi, S.M. et al. Experimental investigation of hybrid nano-lubricant for rheological and thermal engineering applications. J Therm Anal Calorim 138, 1823–1839 (2019). https://doi.org/10.1007/s10973-019-08225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08225-5

Keywords

Navigation