Skip to main content
Log in

Viscosity Analysis of MWCNT(25%)–ZnO(75%)/10W40 Hybrid Nanofluid; Toward a New Look at Finding Efficient Nanofluid for Heat Transfer Goals

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, viscosity of a 10W40-based engine oil containing MWCNT(25%) and ZnO(75%) was experimentally investigated. The experiments were carried out in a temperature range of 5–55 °C and different solid volume fractions (SVF) in the range of 0.05–1%. Viscosity measurements showed that this nanolubricant exhibits pseudo-plastic at all temperatures and VFs. Experimental data showed that in VF of 0.05%, the viscosity of nanofluid (NF) is lower than the viscosity of the base fluid. This finding shows that there is an optimal point for heat transfer applications in some hybrid NFs that makes them economical and optimal. Furthermore, a correlation is proposed to predict the dynamic viscosity. Also, the margin of deviation of this correlation in the prediction of viscosity was measured to be < 5%. To analyze the nanolubricant sensitivity, the sensitivity of the nano-oil was measured relative to the addition of a certain amount of nanoparticle (NP) to it. Based on the results, the sensitivity of the nanolubricant to concentration changes was higher than the effect of the temperature variation on it. The highest sensitivity is reported at SVF of 1% and the temperature of 55 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Volume fraction

B :

Temperature

C :

Shear rate

m :

Consistency index

s :

Size of NP (nm)

T :

Temperature

w :

Weight

BET:

Brunauer–Emmett–Teller

Exp:

Experimental

MOD:

Margin of deviation

MWCNT:

Multi-walled carbon nanotube

NF:

Nanofluid

Pred:

Predicted

RPM:

Revolutions per minute

SR:

Shear rate

SS:

Shear stress

SSA:

Specific surface area

SVF:

Solid volume fraction

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

XRD:

X-ray diffraction

\(\rho\) :

Density (\({\text{kg}}\,{\text{m}}^{ - 3}\))

μ :

Dynamic viscosity (kg m−1 s−1)

\(\dot{\gamma }\) :

Shear rate (1/s)

τ :

Shear stress (Pa)

φ :

Volume fraction (%)

f:

Base fluid

n:

Power law index

nf:

Nanofluid

References

  1. Esfe, M.H.; Rostamian, H.; Sarlak, M.R.; Rejvani, M.; Alirezaie, A.: Rheological behavior characteristics of TiO2-MWCNT/10w40 hybrid nano-oil affected by temperature, concentration and shear rate: an experimental study and a neural network simulating. Phys. E Low-dimensional Syst. Nanostruct. 94, 231–240 (2017)

    Article  Google Scholar 

  2. Esfe, M.H.; Bahiraei, M.; Hajmohammad, M.H.; Afrand, M.: Rheological characteristics of MgO/oil nanolubricants: experimental study and neural network modeling. Int. Commun. Heat Mass Transf. 86, 245–252 (2017)

    Article  Google Scholar 

  3. Esfe, M.H.; Saedodin, S.; Rejvani, M.; Shahram, J.: Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications. Phys. E Low-dimensional Syst. Nanostruct 90, 194–203 (2017)

    Article  Google Scholar 

  4. Esfe, M.H.; Zabihi, F.; Rostamian, H.; Esfandeh, S.: Experimental investigation and model development of the non-Newtonian behavior of CuO-MWCNT-10w40 hybrid nano-lubricant for lubrication purposes. J. Mol. Liq. 249, 677–687 (2018)

    Article  Google Scholar 

  5. Esfe, M.H.; Saedodin, S.; Biglari, M.; Rostamian, H.: Experimental investigation of thermal conductivity of CNTs-Al2O3/water: a statistical approach. Int. Commun. Heat Mass Transf. 69, 29–33 (2015)

    Article  Google Scholar 

  6. Esfe, M.H.; Hajmohammad, M.H.; Razi, P.; Ahangar, M.R.H.; Arani, A.A.A.: The optimization of viscosity and thermal conductivity in hybrid nanofluids prepared with magnetic nanocomposite of nanodiamond cobalt-oxide (ND-Co3O4) using NSGA-II and RSM. Int. Commun. Heat Mass Trans. 79, 128–134 (2016)

    Article  Google Scholar 

  7. Wang, N.; Maleki, A.; Alhuyi Nazari, M.; Tlili, I.; Safdari Shadloo, M.: Thermal conductivity modeling of nanofluids contain MgO particles by employing different approaches. Symmetry 12(2), 206 (2020)

    Article  Google Scholar 

  8. Salari, M.; Malekshah, E.H.; Esfe, M.H.: Three dimensional simulation of natural convection and entropy generation in an air and MWCNT/water nanofluid filled cuboid as two immiscible fluids with emphasis on the nanofluid height ratio's effects. J. Mol. Liq. 227, 223–233 (2017)

    Article  Google Scholar 

  9. Esfe, M.H.; Arani, A.A.A.; Niroumand, A.H.; Yan, W.M.; Karimipour, A.: Mixed convection heat transfer from surface-mounted block heat sources in a horizontal channel with nanofluids. Int. J. Heat Mass Transf. 89, 783–791 (2015)

    Article  Google Scholar 

  10. Esfe, M.H.; Esforjani, S.S.M.; Akbari, M.; Karimipour, A.: Mixed-convection flow in a lid-driven square cavity filled with a nanofluid with variable properties: effect of the nanoparticle diameter and of the position of a hot obstacle. Heat Transf. Res. 45(6) (2014)

  11. Choi, S.U.; Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab., IL (United States) (1995)

  12. Pil Jang, S.; Choi, S.U.: Effects of various parameters on nanofluid thermal conductivity (2007)

  13. Lee, J.H.; Hwang, K.S.; Jang, S.P.; Lee, B.H.; Kim, J.H.; Choi, S.U.; Choi, C.J.: Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transf. 51(11–12), 2651–2656 (2008)

    Article  Google Scholar 

  14. Eastman, J.A.: Novel applications exploiting the thermal properties of nanostructured materials (No. ANL/MSD/CP-97456). Argonne National Lab., IL (US) (1998)

  15. Esfe, M.H.; Wongwises, S.; Naderi, A.; Asadi, A.; Safaei, M.R.; Rostamian, H.; Karimipour, A.: Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. International communications in heat and mass transfer 66, 100–104 (2015)

    Article  Google Scholar 

  16. Esfe, M.H.; Arani, A.A.A.; Rezaie, M.; Yan, W.M.; Karimipour, A.: Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass Transf. 66, 189–195 (2015)

    Article  Google Scholar 

  17. Esfe, M.H.; Yan, W.M.; Akbari, M.; Karimipour, A.; Hassani, M.: Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int. Commun. Heat Mass Transf. 68, 248–251 (2015)

    Article  Google Scholar 

  18. Esfe, M.H.; Esfandeh, S.; Arani, A.A.A.: Proposing a modified engine oil to reduce cold engine start damages and increase safety in high temperature operating conditions. Powder Technol. 355, 251–263 (2019)

    Article  Google Scholar 

  19. Esfe, M.H.; Arani, A.A.A.; Esfandeh, S.; Afrand, M.: Proposing new hybrid nano-engine oil for lubrication of internal combustion engines: Preventing cold start engine damages and saving energy. Energy 170, 228–238 (2019)

    Article  Google Scholar 

  20. Esfe, M.H.; Arani, A.A.A.; Esfandeh, S.: Improving engine oil lubrication in light-duty vehicles by using of dispersing MWCNT and ZnO nanoparticles in 5W50 as viscosity index improvers (VII). Appl. Thermal Eng. 143, 493–506 (2018)

    Article  Google Scholar 

  21. Esfe, M.H.; Hosseinizadeh, E.; Esfandeh, S.: Flooding numerical simulation of heterogeneous oil reservoir using different nanoscale colloidal solutions. J. Mol. Liq. 302, 111972 (2020)

    Article  Google Scholar 

  22. Esfe, M.H.; Esfandeh, S.: 3D numerical simulation of the enhanced oil recovery process using nanoscale colloidal solution flooding. J. Mol. Liq. 301, 112094 (2020)

    Article  Google Scholar 

  23. Esfe, M.H.; Esfandeh, S.; Hosseinizadeh, E.: Nanofluid flooding for enhanced oil recovery in a heterogeneous two-dimensional anticline geometry. Int. Commun. Heat Mass Transf. 118, 104810 (2020)

    Article  Google Scholar 

  24. Esfe, M.H.; Esfandeh, S.: Nanofluid flooding in a randomized heterogeneous porous media and investigating the effect of capillary pressure and diffusion on oil recovery factor. J. Mol. Liq. 113646 (2020)

  25. Aberoumand, S.; Jafarimoghaddam, A.; Moravej, M.; Aberoumand, H.; Javaherdeh, K.: Experimental study on the rheological behavior of silver-heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids. Appl. Therm. Eng. 101, 362–372 (2016)

    Article  Google Scholar 

  26. Meybodi, M.K.; Daryasafar, A.; Koochi, M.M.; Moghadasi, J.; Meybodi, R.B.; Ghahfarokhi, A.K.: A novel correlation approach for viscosity prediction of water based nanofluids of Al2O3, TiO2, SiO2 and CuO. J. Taiwan Inst. Chem. Eng. 58, 19–27 (2016)

    Article  Google Scholar 

  27. Moghaddam, M.A.; Motahari, K.: Experimental investigation, sensitivity analysis and modeling of rheological behavior of MWCNT–CuO (30–70)/SAE40 hybrid nano-lubricant. Appl. Therm. Eng. 123, 1419–1433 (2017)

    Article  Google Scholar 

  28. Esfe, M.H.; Karimpour, R.; Arani, A.A.A.,;Shahram, J.: Experimental investigation on non-Newtonian behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant affected by alterations of temperature, concentration and shear rate for engine applications. Int. Commun. Heat Mass Transf. 82, 97–102 (2017)

    Article  Google Scholar 

  29. https://www.us-nano.com.

  30. Alarifi, I.M.; Alkouh, A.B.; Ali, V.; Nguyen, H.M.; Asadi, A.: On the rheological properties of MWCNT-TiO2/oil hybrid nanofluid: An experimental investigation on the effects of shear rate, temperature, and solid concentration of nanoparticles. Powder Technol. 355, 157–162 (2019)

    Article  Google Scholar 

  31. Esfe, M.H.; Esfandeh, S.; Niazi, S.: An experimental investigation, sensitivity analysis and RSM analysis of MWCNT (10)-ZnO (90)/10W40 nanofluid viscosity. J. Mol. Liq. 288, 111020 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hemmat Esfe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmat Esfe, M. Viscosity Analysis of MWCNT(25%)–ZnO(75%)/10W40 Hybrid Nanofluid; Toward a New Look at Finding Efficient Nanofluid for Heat Transfer Goals. Arab J Sci Eng 46, 5957–5968 (2021). https://doi.org/10.1007/s13369-020-05091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05091-4

Keywords

Navigation