Skip to main content
Log in

Thermal kinetic analysis of metal–insulator transition mechanism in W-doped VO2

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Tungsten (W) doping can decrease the phase transition temperature of VO2, but underlining reasons are not clear. In this study, differential scanning calorimetry was employed to investigate the kinetics of the solid–solid transition in hydrothermal-synthesized W (X = 0.50, 1.09, 2.58 and 3.81 %)-doped VO2 nanoparticles. We firstly revealed the W-doping mechanism by combining the classical nucleation kinetics model with isoconversional kinetic analysis and applied them on the solid–solid transition taking place in doping. The experimentally observed large lag in the cooling stage and asymmetry effects of the decreasing temperature on insulator–metal transition and metal–insulator transition can be rationally explained. In the heating stage, W doping decreases free energy barrier (ΔG*) for homogenous nucleation and reduces geometrical factor (f(Θ)) and both factors promote the transition and thus lower the phase transition temperature quickly. However, in cooling stage, the free energy barrier (ΔG *het ) for heterogeneous nucleation was much larger than that of heating stage due to lacking of proper nucleation sites. The effect of decreasing geometrical factor was accompanied with the effect of increasing free energy barrier for homogenous nucleation by doping W. Such a competition mechanism slows down the trend of reducing temperature. It is important to unravel interaction mechanisms of doped W on different VO2 phases, which is helpful to further tailor kinetic properties of VO2 phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Morin FJ. Oxides which show a metal-to-insulator transition at the neel temperature. Phys Rev Lett. 1959;3(1):34–6.

    Article  CAS  Google Scholar 

  2. Zhang Z, Gao Y, Chen Z, Du J, Cao C, Kang L, Luo H. Thermochromic VO2 thin films: solution-based processing, improved optical properties, and lowered phase transformation temperature. Langmuir. 2010;26(13):10738–44.

    Article  CAS  Google Scholar 

  3. Tan X, Yao T, Long R, Sun Z, Feng Y, Cheng H, Yuan X, Zhang W, Liu Q, Wu C, Xie Y, Wei S. Unraveling metal–insulator transition mechanism of VO2 triggered by tungsten doping. Sci Rep. 2012;2:466.

    Article  Google Scholar 

  4. Zhou J, Gao Y, Liu X, Chen Z, Dai L, Cao C, Luo H, Kanahira M, Sun C, Yan L. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal–insulator transition temperature. Phys Chem Chem Phys. 2013;15(20):7505–11.

    Article  CAS  Google Scholar 

  5. Ren Q, Wan J, Gao Y. Theoretical study of electronic properties of X-doped (X = F, Cl, Br, I) VO2 nanoparticles for thermochromic energy-saving foils. J Phys Chem A. 2014;118(46):11114–8.

    Article  CAS  Google Scholar 

  6. Chen Z, Gao Y, Kang L, Cao C, Chen S, Luo H. Fine crystalline VO2 nanoparticles: synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil. J Mater Chem A. 2014;2(8):2718.

    Article  CAS  Google Scholar 

  7. Whittaker L, Wu T, Stabile A, Sambandamurthy G, Banerjee S. Single-nanowire raman microprobe studies of doping-, temperature-, and voltage-induced metal–insulator transitions of W x V1−x O2 nanowires. ACS Nano. 2011;5(11):8861–7.

    Article  CAS  Google Scholar 

  8. Muraoka Y, Hiroi Z. Metal–insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates. Appl Phys Lett. 2002;80(4):583–5.

    Article  CAS  Google Scholar 

  9. Ko C, Ramanathan S. Effect of ultraviolet irradiation on electrical resistance and phase transition characteristics of thin film vanadium oxide. J Appl Phys. 2008;103(10):106104–3.

    Article  Google Scholar 

  10. Lopez R, Haynes TE, Boatner LA, Feldman LC, Haglund RF. Size effects in the structural phase transition of VO2 nanoparticles. Phys Rev B. 2002;65(22):224113.

    Article  Google Scholar 

  11. Li SY, Niklasson GA, Granqvist CG. Thermochromic fenestration with VO2-based materials: three challenges and how they can be met. Thin Solid Films. 2012;520(10):3823–8.

    Article  CAS  Google Scholar 

  12. Sobhan MA, Kivaisi RT, Stjerna B, Granqvist CG. Thermochromism of sputter deposited W x V1−x O2 films. Sol Energy Mater Sol Cells. 1996;44(4):451–5.

    Article  CAS  Google Scholar 

  13. Romanyuk A, Steiner R, Marot L, Oelhafen P. Temperature-induced metal–semiconductor transition in W-doped VO2 films studied by photoelectron spectroscopy. Sol Energy Mater Sol Cells. 2007;91(19):1831–5.

    Article  CAS  Google Scholar 

  14. Tazawa M, Jin P, Tanemura S. Optical constants of V1−x W x O2 films. Appl Opt. 1998;37(10):1858–61.

    Article  CAS  Google Scholar 

  15. Booth JM, Casey PS. Anisotropic structure deformation in the VO2 metal–insulator transition. Phys Rev Lett. 2009;103(8):086402.

    Article  Google Scholar 

  16. Wu Y, Fan L, Huang W, Chen S, Chen S, Chen F, Zou C, Wu Z. Depressed transition temperature of W x V1−x O2: mechanistic insights from the X-ray absorption fine structure (XAFS) spectroscopy. Phys Chem Chem Phys. 2014;16(33):17705–14.

    Article  CAS  Google Scholar 

  17. Cao C, Gao Y, Luo H. Pure single-crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation property. J Phys Chem C. 2008;112(48):18810–4.

    Article  CAS  Google Scholar 

  18. Du J, Gao Y, Luo H, Kang L, Zhang Z, Chen Z, Cao C. Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition. Sol Energy Mater Sol Cells. 2011;95(2):469–75.

    Article  CAS  Google Scholar 

  19. Li M, Wu X, Li L, Wang Y, Li D, Pan J, Li S, Sun L, Li G. Defect-mediated phase transition temperature of VO2 (M) nanoparticles with excellent thermochromic performance and low threshold voltage. J Mater Chem A. 2014;2(13):4520.

    Article  CAS  Google Scholar 

  20. Peng Z, Jiang W, Liu H. Synthesis and electrical properties of tungsten-doped vanadium dioxide nanopowders by thermolysis. J Phys Chem C. 2007;111(3):1119–22.

    Article  CAS  Google Scholar 

  21. Shi J, Zhou S, You B, Wu L. Preparation and thermochromic property of tungsten-doped vanadium dioxide particles. Sol Energy Mater Sol Cells. 2007;91(19):1856–62.

    Article  CAS  Google Scholar 

  22. Kang L, Gao Y, Luo H. A novel solution process for the synthesis of VO2 thin films with excellent thermochromic properties. ACS Appl Mater Interfaces. 2009;1(10):2211–8.

    Article  CAS  Google Scholar 

  23. Gao Y, Cao C, Dai L, Luo H, Kanehira M, Ding Y, Wang ZL. Phase and shape controlled VO2 nanostructures by antimony doping. Energy Environ Sci. 2012;5(9):8708.

    Article  CAS  Google Scholar 

  24. Farasat R, Vyazovkin S. Nanoconfined solid–solid transitions: attempt to separate the size and surface effects. J Phys Chem C. 2015;119(17):9627–36.

    Article  CAS  Google Scholar 

  25. Chen K, Baker AN, Vyazovkin S. Concentration effect on temperature dependence of gelation rate in aqueous solutions of methylcellulose. Macromol Chem Phys. 2009;210(3–4):211–6.

    Article  CAS  Google Scholar 

  26. Farasat R, Vyazovkin S. Coil-to-globule transition of poly(N-isopropylacrylamide) in aqueous solution: kinetics in bulk and nanopores. Macromol Chem Phys. 2014;215(21):2112–8.

    Article  CAS  Google Scholar 

  27. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27(18):1515–32.

    Article  CAS  Google Scholar 

  28. Zhang X-H, He C, Wang L, Li Z-Q, Feng Q. Synthesis, characterization and nonisothermal decomposition kinetics of La2(CO3)3·3.4H2O. J Therm Anal Calorim. 2015;119(3):1713–22.

    Article  CAS  Google Scholar 

  29. Murias P, Byczyński Ł, Maciejewski H, Galina H. A quantitative approach to dynamic and isothermal curing of an epoxy resin modified with oligomeric siloxanes. J Therm Anal Calorim. 2015;122(1):215–26.

    Article  CAS  Google Scholar 

  30. Ledeţi I, Vlase G, Vlase T, Fuliaş A. Kinetic analysis of solid-state degradation of pure pravastatin versus pharmaceutical formulation. J Therm Anal Calorim. 2015;121(3):1103–10.

    Article  Google Scholar 

  31. Lin B, Liu L, Chen W, Luo H, Yang X. Synthesis and characterization of graphene sheets grafted with linear triblock copolymers based on methacrylate ester. J Therm Anal Calorim. 2015;122(3):1503–14.

    Article  CAS  Google Scholar 

  32. Blagojevic VA, Obradovic N, Cvjeticanin N, Minic DM. Influence of dimensionality on phase transition in VO2 nanocrystals. Sci Sinter. 2013;45(3):305–11.

    Article  Google Scholar 

  33. Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Heidelberg: Springer; 2015.

    Book  Google Scholar 

  34. Fan W, Cao J, Seidel J, Gu Y, Yim JW, Barrett C, Yu KM, Ji J, Ramesh R, Chen LQ, Wu J. Large kinetic asymmetry in the metal–insulator transition nucleated at localized and extended defects. Phys Rev B. 2011;83(23):235102–7.

    Article  Google Scholar 

  35. Sohn JI, Joo HJ, Ahn D, Lee HH, Porter AE, Kim K, Kang DJ, Welland ME. Surface-stress-induced Mott transition and nature of associated spatial phase transition in single crystalline VO2 nanowires. Nano Lett. 2009;9(10):3392–7.

    Article  CAS  Google Scholar 

  36. Guo H, Chen K, Oh Y, Wang K, Dejoie C, Asif SAS, Warren OL, Shan ZW, Wu J, Minor AM. Mechanics and dynamics of the strain-induced M1–M2 structural phase transition in individual VO2 nanowires. Nano Lett. 2011;11(8):3207–13.

    Article  CAS  Google Scholar 

  37. Li Y, Ji S, Gao Y, Luo H, Jin P. Modification of Mott phase transition characteristics in VO2@TiO2 core/shell nanostructures by misfit-strained heteroepitaxy. ACS Appl Mater Interfaces. 2013;5(14):6603–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their deep appreciation to Prof. Sergey Vyazovkin for his useful suggestions. This work is supported by National Nature Science Foundation of China (Nos. 51325203, 51472263), Shanghai Materials Genome Project (14DZ2261200), Project supported by Shanghai technical platform for testing and characterization on inorganic materials (14DZ2292900), and Program of the Innovative Fund of Shanghai Institute of Ceramics, Chinese Academy of Science (Y37ZC4143G).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huimei Yu or Yanfeng Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yu, H., Chen, Z. et al. Thermal kinetic analysis of metal–insulator transition mechanism in W-doped VO2 . J Therm Anal Calorim 126, 949–957 (2016). https://doi.org/10.1007/s10973-016-5579-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5579-3

Keywords

Navigation