Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 102, Issue 3, pp 931–939 | Cite as

Thermoanalytical investigations of tris(ethylenediamine)nickel(II) oxalate and sulphate complexes

TG–MS and TR–XRD studies
  • K. S. Rejitha
  • Suresh MathewEmail author
Article

Abstract

Investigations on the thermal behaviour of [Ni(en)3]C2O4·2H2O and [Ni(en)3]SO4 have been carried out in air and helium atmosphere. Simultaneous TG/DTA coupled online with mass spectroscopy (MS) in helium atmosphere detected the presence of H2, O, CO, N2/CH2=CH2 and CO2 fragments during the decomposition of tris(ethylenediamine)nickel(II) oxalate and H2, O, NH, NH2, NH3 and N2/CH2=CH2 fragments for tris(ethylenediamine)nickel(II) sulphate complex. The thermal events during the decomposition were monitored by temperature-resolved X-ray diffraction. In air, both the complexes give nickel oxide as the final product of the decomposition. In helium atmosphere, tris(ethylenediamine)nickel(II) oxalate gives nickel as the residue, whereas tris(ethylenediamine)nickel(II) sulphate gives a mixture of nickel and nickel sulphide phases as the final residue. Kinetic analyses of these complexes by isoconversional methods are discussed and compared.

Keywords

Mass spectroscopy Temperature resolved X-ray diffraction Kinetic analysis Isoconversional method 

Notes

Acknowledgements

The authors are grateful to the Sophisticated Test and Instrumentation Centre (STIC), Cochin, for recording TR–XRD patterns. The authors are also grateful to Prof. T. Ichikawa, Institute for Advanced Materials Research, Hiroshima University, Japan, for the TG–MS analyses.

References

  1. 1.
    Singh G, Pandey DK. Studies on energetic compounds: kinetics and mechanism of thermolysis of bis(ethylenediamine)metal nitrate and their role in the burning rate of solid propellants. Propellants Explos Pyrotech. 2003;28:231–9.CrossRefGoogle Scholar
  2. 2.
    Mathew S, Nair CGR, Ninan KN. Thermal decomposition studies on amine complexes of copper(II) nitrate in solid state. Bull Chem Soc Jpn. 1991;64:3207–9.CrossRefGoogle Scholar
  3. 3.
    Mathew S, Nair CGR, Ninan KN. Kinetics and mechanism of thermal decomposition of bis(ethylenediamine)copper(II) halide monohydrate. Thermochim Acta. 1991;181:253–68.CrossRefGoogle Scholar
  4. 4.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  5. 5.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B. 1996;4:323–8.CrossRefGoogle Scholar
  6. 6.
    Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci B. 1969;7:41–6.CrossRefGoogle Scholar
  7. 7.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  8. 8.
    Akahira T, Sunose T. Research report of Chiba Institute Technology. Sci Technol. 1971;16:22–31.Google Scholar
  9. 9.
    Haschke JM, Wendlandt WW. The thermal decomposition of metal ethylenediamine complexes. Anal Chim Acta. 1965;32:386–93.CrossRefGoogle Scholar
  10. 10.
    Rochow EG, editor. Inorganic synthesis, vol VI. New York: McGraw-Hill; 1960. p. 198–200.Google Scholar
  11. 11.
    Vogel AG. Text book of quantitative inorganic analysis. 4th ed. Longmann: London; 1978.Google Scholar
  12. 12.
    Cai JM, Bi LS. Kinetic analysis of wheat straw pyrolysis using isoconversional methods. J Therm Anal Calorim. 2009;98:325–30.CrossRefGoogle Scholar
  13. 13.
    Su TT, Zhai YC, Jiang H, Gong H. Studies on the thermal decomposition kinetics and mechanism of ammonium niobium oxalate. J Therm Anal Calorim. 2009;98:449–55.CrossRefGoogle Scholar
  14. 14.
    Badrinarayanan P, Zheng W, Simon SL. Isoconversional analysis of the glass transition. Thermochim Acta. 2008;468:87–93.CrossRefGoogle Scholar
  15. 15.
    Jankovic B, Adnadevic B, Javanovic J. Application of model fitting and model free kinetics to the study of non isothermal dehydration of equilibrium swollen poly(acrylic acid) hydrogel: thermogravimetric analysis. Thermochim Acta. 2007;452:106–15.CrossRefGoogle Scholar
  16. 16.
    Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.CrossRefGoogle Scholar
  17. 17.
    Małecka B, Małecki A, Drożdż-Cieśla E, Tortet L, Llewellyn P, Rouquerol F. Some aspects of thermal decomposition of NiC2O4·2H2O. Thermochim Acta. 2007;466:57–62.CrossRefGoogle Scholar
  18. 18.
    Rejitha KS, Mathew S. Thermal deamination kinetics of tris(ethylenediamine)nickel(II) sulphate in the solid state. J Therm Anal Calorim. 2008;93:213–7.CrossRefGoogle Scholar
  19. 19.
    Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19:45–60.CrossRefGoogle Scholar
  20. 20.
    Vyazovkin S, Linert W. Kinetic analysis of reversible thermal decomposition of solids. Int J Chem Kinet. 1995;27:73–84.CrossRefGoogle Scholar
  21. 21.
    Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia

Personalised recommendations