Journal of Thermal Analysis and Calorimetry

, Volume 85, Issue 1, pp 157–164

Prediction of thermal stability of fresh and aged parchment

Article
  • 107 Downloads

Abstract

The hyphenated thermal analysis-mass spectrometry technique (TA-MS) was applied for the investigation of the thermal behavior of reference and aged parchment samples. The kinetic parameters of the process were calculated independently from all recorded TA and MS signals. The kinetic analysis showed the distinct dependence of the activation energy on the reaction progress. Such behavior is characteristic for the multistage mechanism of the reaction.

The comparison of the kinetic parameters calculated from the different signals i.e. TG, DSC, MS for H2O, NO and CO2, however, indicated that they were differently dependent on the aging of the sample. For the parchment samples, the aging almost does not change the kinetics of the decomposition calculated from the DSC data: the influence of aging seems to be too negligible to be detected by these techniques. On the other hand, the much more sensitive mass spectrometric technique applied to the kinetic analysis allowed monitoring of visible changes in the thermal behavior of the parchment samples due to the aging process. The influence of aging was especially visible when the MS signals of water and nitric oxide were applied for the determination of the kinetic parameters.

The applied method of the kinetic analysis allowed also the prediction of the thermal behaviour of reference and aged parchment samples under isothermal and modulated temperature conditions. Presented results have confirmed the usefulness of thermoanalytical methods for investigating behaviour of such complicated systems as leather or parchment.

Keywords

cultural heritage hyphenated thermal analysis-mass spectrometry kinetics parchment TG-MS thermal ageing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Advanced Kinetics and Technology Solutions: http://www.akts.com (AKTS-Thermokinetics software and AKTS-Thermal Safety software).Google Scholar
  2. 2.
    Cohen, NS, Odlyha, M, Foster, GM 2000Thermochim. Acta365111CrossRefGoogle Scholar
  3. 3.
    Roduit, B, Baldyga, J, Maciejewski, M, Baiker, A 1997Thermochim. Acta29559CrossRefGoogle Scholar
  4. 4.
    Brown, ME, Maciejewski, M, Vyazovkin, S, Nomen, R, Sempere, J, Burnham, A, Opfermann, J, Strey, R, Anderson, HL, Kemmler, A, Keuleers, R, Janssens, J, Desseyn, HO, Li, C-R, Tang, TB, Roduit, B, Malek, J, Mitsuhashi, T 2000Thermochim. Acta355125CrossRefGoogle Scholar
  5. 5.
    Maciejewski, M 2000Thermochim. Acta355145CrossRefGoogle Scholar
  6. 6.
    Burnham, A 2000Thermochim. Acta355165CrossRefGoogle Scholar
  7. 7.
    Roduit, B 2000Thermochim. Acta355171CrossRefGoogle Scholar
  8. 8.
    Roduit, B, Borgeat, Ch, Berger, B, Folly, P, Alonso, B, Aebischer, JN 2005J. Therm. Anal. Cal.8091CrossRefGoogle Scholar
  9. 9.
    Roduit, B, Borgeat, Ch, Berger, B, Folly, P, Alonso, B, Aebischer, JN, Stoessel, F 2005J. Therm. Anal. Cal.80229CrossRefGoogle Scholar
  10. 10.
    Hemminger, WF, Sarge, SM 1991J. Thermal Anal.371455CrossRefGoogle Scholar
  11. 11.
    Friedman, HL 1966J. Polym. Lett.4323CrossRefGoogle Scholar
  12. 12.
    Ozawa, T 1965Bull. Chem. Soc. Jpn.381881CrossRefGoogle Scholar
  13. 13.
    Flynn, JH, Wall, LA 1966J. Res. Nat. Bur. Standards70A487Google Scholar
  14. 14.
    Budrugeac, P 2002J. Therm. Anal. Cal.68131CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.AKTS AG Advanced Kinetics and Technology SolutionsSidersSwitzerland
  2. 2.Thermal Methods and Conservation Science Laboratory, School of Biological and Chemical SciencesLondonUK

Personalised recommendations