Skip to main content
Log in

Facile preparation of ZrCO composite aerogel with high specific surface area and low thermal conductivity

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A novel ZrCO composite aerogel is synthesized using zirconium oxychloride and resorcinol–formaldehyde (RF) as precursors through the sol–gel route and carbothermal reduction process. The effects of different Zr/R molar ratios and calcination temperatures on the physical chemistry properties of ZrCO aerogels are investigated. The ZrCO composite aerogel consists of the C/ZrO2/ZrC ternary aerogel. The results show that with the increase of R/Zr molar ratios, the specific surface area and bulk density increase with calcination temperature up to 1300 °C, but decrease at even temperature (1500 °C). The specific surface area is as high as 637.4 m2/g for ZrCO composite aerogel (R:Zr = 2:1), which was higher than ever reported. As the heat-treatment temperature increases to 1500 °C, the ZrC crystalline phase occurs and the t-ZrO2 phase still appears within the composite. The thermal conductivity of the carbon fiber mat-reinforced composite aerogel is as low as 0.057 W/m/K at room temperature (25 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blaese D, Garcia DE, Guglielmi P et al (2015) ZrO2 fiber-matrix interfaces in alumina fiber-reinforced model composites. J Eur Ceram Soc 35(5):1593–1598

    Article  Google Scholar 

  2. Gavalas VG, Andrews Rodney, Bhattacharyya Dibakar et al (2015) Carbon nanotube sol−gel composite materials. Nano Lett 1(12):719–721

    Article  Google Scholar 

  3. He J, Li X, Su D et al (2016) Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites. J Eur Ceram Soc 36(6):1487–1493

    Article  Google Scholar 

  4. Chao X, Yuan W, Shi Q et al (2016) Improvement of thermal stability of zirconia aerogel by addition of yttrium. J Sol Gel Sci Technol 80(3):667–674

    Article  Google Scholar 

  5. Xiang Y, Wang Q, Cao F et al (2017) Sol-gel process and high-temperature property of SiO2/ZrO2-SiO2 composites. Ceram Int 43(1):854–859

    Article  Google Scholar 

  6. Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol Gel Sci Technol 63(3):315–339

    Article  Google Scholar 

  7. Zhong L, Chen XH et al (2014) Synthesis of monolithic zirconia aerogel via a nitric acid assisted epoxide additon method. Rsc Adv 4(60):31666

    Article  Google Scholar 

  8. Schäfer H, Brandt S, Milow B et al (2013) Zirconia-based aerogels via hydrolysis of salts and alkoxides: the influence of the synthesis procedures on the properties of the aerogels. Chem Asian J 8(9):2211–2219

    Article  Google Scholar 

  9. Hu Z, He J, Li X et al (2016) Improvement of thermal stability of ZrO2–SiO2 aerogels by an inorganic–organic synergetic surface modification. J Porous Mat 24(3):657–665

  10. Xiong R, Li X, Ji H et al (2014) Thermal stability of ZrO2–SiO2 aerogel modified by Fe(III) ion. J Sol Gel Sci Technol 72(3):496–501

    Article  Google Scholar 

  11. Ren J, Cai X, Yang H et al (2015) Preparation and characterization of high surface area ZrO2 aerogel modified by SiO2. J Porous Mat 22(4):973–978

    Article  Google Scholar 

  12. Wang Q, Li X, Fen W et al (2014) Synthesis of crack-free monolithic ZrO2, aerogel modified by SiO2. J Porous Mat 21(2):127–130

    Article  Google Scholar 

  13. He J, Li X, Su D et al (2016) Super-hydrophobicity hexamethyl-disilazane modified ZrO2-SiO2 aerogels with excellent thermal stability. J Mater Chem A 4(15):5632–5638

    Article  Google Scholar 

  14. Zu G, Shen J, Zou L et al (2016) Highly thermally stable zirconia/silica composite aerogels prepared by supercritical deposition. Microporous Mesoporous Mat 238:90–96

    Article  Google Scholar 

  15. Taavoni-Gilan A, Taheri-Nassaj E, Akhondi H (2009) The effect of zirconia content on properties of Al2O3-ZrO2, (Y2O3) composite nanopowders synthesized by aqueous sol–gel method. J Non Cryst Solids 355(4–5):311–316

    Article  Google Scholar 

  16. Li XK, Liu L, Shen SD et al (2001) The carbothermal reduction synthesis of Zr(C,O) nanoparticles from binary carbonaceous-zirconia aerogel. J Mater Sci Lett 20(18):1663–1665

    Article  Google Scholar 

  17. Li XK, Liu L, Ge S et al (2001) The preparation of Ti(C,N,O) nanoparticles using binary carbonaceous titania aerogel. Carbon 39(6):827–833

    Article  Google Scholar 

  18. Shen XT, Li KZ, Li HJ et al (2010) Microstructure and ablation properties of zirconium carbide doped carbon/carbon composites. Carbon 48(2):344–351

    Article  Google Scholar 

  19. Shen XT, Li KZ, Li HJ et al (2011) The effect of zirconium carbide on ablation of carbon/carbon composites under an oxyacetylene flame. Corros Sci 53(1):105–112

    Article  Google Scholar 

  20. Sun W, Xiong X, Huang BY et al (2009) ZrC ablation protective coating for carbon/carbon composites. Carbon 47(14):3368–3371

    Article  Google Scholar 

  21. Ye L, Qiu W, Li H et al (2013) Preparation and characterization of ZrCO/C composite aerogels. J Sol Gel Sci Technol 65(2):150–159

    Article  Google Scholar 

  22. Feng J, Zhang C, Feng J et al (2011) Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements. ACS Appl Mater Inter 3(12):4796

    Article  Google Scholar 

  23. Feng J, Feng J, Zhang C (2012) Thermal conductivity of low density carbon aerogels. J Porous Mat 19(5):551–556

    Article  Google Scholar 

  24. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24(9):3221–3227

    Article  Google Scholar 

  25. Tamon H, Ishizaka H, Mikami M et al (1997) Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon 35(6):791–796

    Article  Google Scholar 

  26. Cao FC, Ren LL, Li XA (2015) Synthesis of high strength monolithic alumina aerogels at ambient pressure. RSC Adv 5(23):18025–18028

    Article  Google Scholar 

  27. Leventis N, Sotiriouleventis C, Mohite DP et al (2011) Polyimide aerogels by ring-opening metathesis polymerization (ROMP). Chem Mater 23(8):2250–2261

    Article  Google Scholar 

  28. Baumann TF, Gash AE, Chinn SC et al (2005) Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem Mater 17(2):395–401

    Article  Google Scholar 

  29. Ma BY, Li Y, Yu JK (2012) A review on synthesis of high performance composites from zircon. Adv Mater Res 391-392:737–740

    Article  Google Scholar 

  30. Deng X, Du S, Zhang H et al (2005) Preparation and characterization of ZrB2–SiC composite powders from zircon via microwave-assisted boro/carbothermal reduction. Ceram Int 41(10):14419–14426

    Article  Google Scholar 

  31. Sondhi A, Morandi C, Reidy RF et al (2013) Theoretical and experimental investigations on the mechanism of carbothermal reduction of zirconia. Ceram Int 39(4):4489–4497

    Article  Google Scholar 

  32. Vasilevskaya A, Almjasheva OV, Gusarov VV (2016) Peculiarities of structural transformations in zirconia nanocrystals. J Nanopart Res 18(7):1–11

    Article  Google Scholar 

  33. Yi X, Zhang L, Wang F et al (2014) Mechanically reinforced composite aerogel blocks by self-growing nanofibers. Rsc Adv 4(89):48601–48605

    Article  Google Scholar 

  34. Wu X, Shao G, Liu S et al (2017) A new rapid and economical one-step method for preparing SiO2 aerogels using supercritical extraction. Powder Technol 312(1):1–10

    Article  Google Scholar 

  35. Wu X, Li W, Shao G et al (2017) Investigation on textural and structural evolution of the novel crack-free equimolar Al2O3-SiO2-TiO2 ternary aerogel during thermal treatment. Ceram Int 43(5):4188–4196

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Industry Program of Science and Technology Support Project of Jiangsu Province (BE2016171), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R35), the Major Program of Natural Science Fund in Colleges and Universities of Jiangsu Province (15KJA430005), the Prospective Joint Research Program of Jiangsu Province (BY2015005-01), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0977), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

  • We have developed a sol–gel route to synthesize the ZrCO composite aerogel using inexpensive inorganic salts of zirconium.

  • The ZrC crystalline phase occurs and the t-ZrO2 phase still appears within the composite at 1500 °C.

  • The specific surface area of the ZrCO composite aerogel is as high as 637.4 m2/g.

  • The thermal conductivities of the carbon fiber mat-reinforced composite aerogel are as low as 0.057 W/m/K (25 °C).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Suo, H., Jing, F. et al. Facile preparation of ZrCO composite aerogel with high specific surface area and low thermal conductivity. J Sol-Gel Sci Technol 86, 383–390 (2018). https://doi.org/10.1007/s10971-018-4638-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4638-6

Keywords

Navigation